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Stability of the Zero Solution of Stochastic Differential
Systems with Two-dimensional Brownian motion

Jaromı́r Baštinec, Marie Klimešová

Department of Mathematics, Faculty of Electrical Engineering and Communication Brno
University of Technology,

Technická 2848/8, 61600, Brno, Czech Republic.
bastinec@feec.vutbr.cz, xklime01@stud.feec.vutbr.cz

Abstract: The natural world is influenced by stochasticity therefore stochastic models are used
to test various situations because only the stochastic model can approximate the real model. For
example, the stochastic model is used in population, epidemic and genetic simulations in medi-
cine and biology, for simulations in physical and technical sciences, for analysis in economy,
financial mathematics, etc. The crucial characteristic of the stochastic model is its stability.

This article studies the fundamental theory of the stochastic stability. There is investigated
the stability of the solution of stochastic differential equations (SDEs) and systems of SDEs.
The article begins with a summary of the stochastic theory. Then, there are inferred conditi-
ons for the asymptotic mean square stability of the zero solution of stochastic equation with
one-dimensional Brownian motion and system with two-dimensional Brownian motion. There
is used a Lyapunov function for proofs of main results.

Keywords: Brownian motion, stochastic differential equation, Lyapunov function, stochastic
Lyapunov function, stability, stochastic stability.

Introduction
Stochastic modeling has come to play an important role in many branches of science and in-
dustry where more and more people have encountered stochastic differential equations. Sto-
chastic model can be used to solve problem which evinces by accident, noise, etc. Definition
of probability spaces, stochastic process, stochastic differential equation and an existence and
uniqueness of solution of these equations, were mentioned in [15], [16], [17]. It was taken from
B. Øksendal [13], E. Kolářová [9], B. Maslowski [11], S. Ditlevsen [3], M. Navara [12] and
J. Staněk [14]. In this paper we focus on the description of the stochastic stability. Stability is
studied both for difference equations and systems [5], and for differential equations and systems
[1], [2], [4], [6] or [7]. The stability theory was introduced by R. Z. Khasminskii [8]. The basic
principles of various types of stochastic systems are described by X.Mao [10]. In the paper we
derived sufficient conditions for general system of the zero solution of the stochastic differential
equation using Lyapunov function.

Definition 1 Let (Ω,F , P ) be a probability space. LetBt = (B1(t), ..., Bm(t)) be m-dimensional
Brownian motion and b : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×m be measurable functions.
Then the processXt = (X1(t), ..., Xm(t)), t ∈ [0, T ] is the solution of the stochastic differential
equation
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dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (1)

b(t,Xt) ∈ R, σ(t,Xt)Wt ∈ R. After the integration of equation (1) we give the solution of the
SDE in the integral form

Xt = X0 +

t∫
0

b(s,Xs)ds+

t∫
0

σ(s,Xs)dBs.

Assume that for every initial value Xt(0) = X0 ∈ Rn , there exists a unique global solution
which is denoted by X(t; t0, X0). So equation (1) has the solution Xt(0) ≡ 0 corresponding to
the initial value Xt(0) = 0. This solution is called the trivial solution or equilibrium position.

1 Stability of Stochastic Differential Equations
In 1892 A.M. Lyapunov developed a methods for determining stability without solving the
equation. We are used the second Lyapunov method: Let K denote the family of all continuous
nondecreasing functions µ : R+ → R+ such that µ(0) = 0 and µ(r) > 0 if r > 0. For h > 0,
let Sh = {x ∈ Rn : |x| < h}. A continuous function V (x, t) defined on Sh × [t0,∞) is said to
be positive-definite (in the sense of Lyapunov) if V (0, t) ≡ 0 and, for some µ ∈ K,

V (x, t) ≥ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

A function V (x, t) is said to be negative-definite if (−V (x, t)) is positive-definite. A conti-
nuous non-negative function V (x, t) is said to be decrescent (i.e. to have an arbitrarily small
upper bound) if for some µ ∈ K,

V (x, t) ≤ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

A function V (x, t) defined on Rn × [t0,∞) is said to be radially unbounded if

lim
|x|→∞

(
inf
t≥t0

V (x, t)

)
=∞.

Let C1,1(Sh × [t0,∞), R+) denote the family of all continuous functions V (x, t) from Sh ×
[t0,∞) to R+ with continuous first partial derivatives with respect to every component of x and
to t. Then v(t) = V (t,Xt) represents a function of t with the derivative

v̇(t) = Vt(t,Xt) + Vx(t,Xt)b(t,Xt) =
∂V

∂t
(t,Xt) +

n∑
i=1

∂V

∂xi
(t,Xt)bi(t,Xt).

If v̇(t) ≤ 0, then v(t) will not increase so the distance ofXt from the equilibrium point measured
by V (t,Xt) does not increase. If v̇(t) < 0, then v(t) will decrease to zero so the distance will
decrease to zero, that is Xt → 0.
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Theorem 1 (Lyapunov theorem) If there exists a positive-definite function
V (x, t) ∈ C1,1(Sh × [t0,∞), R+) such that

V̇ (x, t) := Vt(t,Xt) + Vx(t,Xt)b(t,Xt) ≤ 0

for all (x, t) ∈ Sh × [t0,∞), then the trivial solution is stable. If there exists a positive-definite
decrescent function V (x, t) ∈ C1,1(Sh×[t0,∞), R+) such that V̇ (x, t) is negative-definite, then
trivial solution of the system is asymptotically stable.

Suppose one would like to let the initial value be a random variable. It should also be pointed
out that when σ(x,t) = 0, these definitions reduce to the corresponding deterministic ones. We
now extend the Lyapunov Theorem 1 to the stochastic case. Let 0 < h ≤ ∞. Denote by
C2,1(Sh × R+, R+) the family of all nonnegative functions V (x, t) defined on Sh × R+ such
that they are continuously twice differentiable in x and once in t. Define the differential operator
L associated with equation (1) by

L =
∂

∂t
+

n∑
i=1

∂

∂xi
(t,Xt)bi(x, t) +

1

2

n∑
i,j=1

∂2

∂xi∂xj

[
σ(x, t)σT (x, t)

]
ij
.

The inequality V̇ (x, t) ≤ 0 will be replaced by LV (x, t) ≤ 0 in order to get the stochastic
stability assertions.

Theorem 2 If there exists a positive-definite

(i) function V (x, t) ∈ C2,1(Sh × [t0,∞), R+) such that LV (x, t) ≤ 0 for all (x, t) ∈ Sh ×
[t0,∞), then the trivial solution of equation (1) is stochastically stable.

(ii) decrescent function V (x, t) ∈ C2,1(Sh × [t0,∞), R+) such that LV (x, t) is negative-
definite, then the trivial solution of equation (1) is stochastically asymptotically stable.

(iii) decrescent radially unbounded function V (x, t) ∈ C2,1(Rn × [t0,∞), R+) such that
LV (x, t) is negative-definite, then the trivial solution of equation (1) is stochastically
asymptotically stable in the large.

Proof: [10], pp. 111.

2 Main results
We have a homogenous linear stochastic differential equation

dXt = A(Xt)dt+GdBt, (2)

where Xt =

(
X1(t)
X2(t)

)
, A =

(
a b
c d

)
, G =

(
e f
g h

)
, Bt =

(
B1(t)
B2(t)

)
,

a, b, c, d, e, f, g are constants.
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Definition 2 Lyapunov quadratic function V is given

V (Xt) = XT
t Q Xt,

where Q =

(
p q
q p

)
is a symmetric positive-definite matrix, i.e. p > 0,

p2 − q2 > 0.

Theorem 3 Equation (2) is stable if

LV = 2
[
aX2

1 (t) + dX2
2 (t) + (c+ b)X1(t)X2(t) + e2 + f 2 + g2 + h2

]
.

Proof:
We compute derivation of Lyapunov function of equation (2)

dV (Xt) = V (Xt + dXt)− V (Xt)

= (XT
t + (AXt)

Tdt+ (GdBt)
T )Q(Xt + AXtdt+GdBt)−XT

t QXt

= XT
t QXt +XT

t QAXtdt+XT
t QGdBt + (AXt)

TdtQXt

+ (AXt)
TdtQAXtdt+ (AXt)

TdtQGdBt + (GdBt)
TQXt

+ (GdBt)
TQAXtdt+ (GdBt)

TQGdBt −XT
t QXt

= XT
t QAXtdt+XT

t QGdBt +XT
t A

TdtQXt +XT
t A

TdtQAXtdt

+ XT
t A

TdtQGdBt + dBT
t G

TQXt + dBT
t G

TQAXtdt+ dBT
t G

TQGdBt.

We use the rules:

dt · dt = dt · dB1(t) = dt · dB2(t) = dB1(t) · dB2(t) = 0,

dB1(t) · dB1(t) = dB2(t) · dB2(t) = dt.

After modyfying we get

dV (Xt) = XT
t QAXtdt+XT

t QGdBt +XT
t A

TdtQXt + dBT
t G

TQXt

+ dBT
t G

TQGdBt.

In matrix form

dV

(
X1(t)
X2(t)

)
=

(
X1(t)
X2(t)

)T (
p q
q p

)(
a b
c d

)(
X1(t)
X2(t)

)
dt

+

(
X1(t)
X2(t)

)T (
p q
q p

)(
e f
g h

)(
dB1(t)
dB2(t)

)
+

(
X1(t)
X2(t)

)T (
a b
c d

)T (
p q
q p

)(
X1(t)
X2(t)

)
dt

+

(
dB1(t)
dB2(t)

)T (
e f
g h

)T (
p q
q p

)(
X1(t)
X2(t)

)
+

(
dB1(t)
dB2(t)

)T (
e f
g h

)T (
p q
q p

)(
e f
g h

)(
dB1(t)
dB2(t)

)
.
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We determine (
e f
g h

)T (
p q
q p

)(
e f
g h

)
= M =

(
m1 m2

m3 m4

)
.

Then we have[(
e f
g h

)(
dB1(t)
dB2(t)

)]T (
p q
q p

)(
e f
g h

)(
dB1(t)
dB2(t)

)
=

(
dB1(t)
dB2(t)

)T (
m1 m2

m3 m4

)(
dB1(t)
dB2(t)

)
=

(
m1dB1(t) +m3dB2(t) m2dB1(t) +m4dB2(t)

)( dB1(t)
dB2(t)

)
= m1dB1(t)dB1(t) +m3dB2(t)dB1(t) +m2dB1(t)B2(t) +m4dB2(t)B2(t)

= m1dt+m4dt = tr(M)dt,

where tr(M) is trace of square matrix M .

We get

dV (Xt) = 2
[
(ap+ cq)X2

1 (t) + (dp+ bq)X2
2 (t) + ((b+ c)p

+ (a+ d)q)X1X2(t) + (2q(hf + eg) + p(e2 + f 2 + g2 + h2))
]
dt

+ 2 [(ep+ gq)X1(t) + (gp+ eq)X2(t)] dB1(t) + 2 [(fp+ hq)X1(t)

+ (hp+ fq)X2(t)] dB2(t).

We apply expectation E {dV (Xt)}

E {dV (Xt)} = 2
[
(ap+ cq)X2

1 (t) + (dp+ bq)X2
2 (t) + ((b+ c)p

+ (a+ d)q)X1(t)X2(t) + (2q(hf + eg)

+ p(e2 + f 2 + g2 + h2)
]
dt = LV dt.

For Q = I we get

LV = 2
[
aX2

1 (t) + dX2
2 (t) + (c+ b)X1(t)X2(t) + e2 + f 2 + g2 + h2

]
.

Now we can do a discussion under which conditions the system will be stable.

The Euclidean matrix norm A on the space Rn can be define as

‖A‖E :=

√√√√ n∑
i=1

m∑
j=1

a2ij,

where aij is a matrix element of the i-th line and of the j-th column of the matrix, n is number
of matrix raws, m is number of matrix columns.
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We denote e2 + f 2 + g2 + h2 = ‖G‖2
and give

LV = 2
[
aX2

1 (t) + dX2
2 (t) + (c+ b)X1(t)X2(t) + ‖G‖2]. (3)

The Lyapunov function LV will be negative definite if and only when

aX2
1 (t) + dX2

2 (t) + (c+ b)X1(t)X2(t) + ‖G‖2 ≤ 0,

because ‖G‖2 ≥ 0, therefore the matrix A must be sufficiently negative, to obtain a negative
definite function.

Sylvester’s criterion is a necessary and sufficient criterion to determine whether a matrix is
positive-definite.

Theorem 4 (Sylvester’s criterion)
Let A be a real symetric matrix of the n-th order. For k = 1, . . . , n we denote the main subde-
terminants Dk of the matrix A

Dk = det


a11 a12 · · · a1k
a21 a22 · · · a2n

...
... . . . ...

ak1 ak2 · · · akn

 .

Then the matrix A is positive definite if and only when Dk > 0 pro k = 1, . . . , n. And analo-
gously the matrix A is negative definite if and only when (−1)kDk > 0 for k = 1, . . . , n.

Corollary 1 First, we consider a diagonal matrix A in the form

A =

(
a 0
0 a

)
.

The matrix A will be negative definite under following conditions:

D1 = |a11| = a < 0,

D2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =

∣∣∣∣a 0
0 a

∣∣∣∣ = a2 > 0

⇒ if holds D1 then the condition D2

is obvious.

Then from (3) follows

aX2
1 (t) + aX2

2 (t) ≤ −‖G‖2

or

a ‖Xt‖2 ≤ −‖G‖2 .
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If the variable a is negative and also inequality a ‖Xt‖2 ≤ −‖G‖2 is valid, then the system is
stochastically stable.

We find a solution of the stochastic system based on eigenvalues. If
a12 = a21 = 0, then λ1 ≈ a11, λ2 ≈ a22 ⇒ λ1,2 = a. Because a is negative we make substitu-
tion a = −α, α > 0. We give a solution of the system

X1(t) = C1e
−αt,

X2(t) = C2te
−αt,

when C1, C2 are constants.

Corollary 2 We consider a diagonal matrix A in the form

A =

(
a 0
0 b

)
.

The matrix A will be negative definite under following conditions:

D1 = |a11| = a < 0,

D2 =

∣∣∣∣a 0
0 b

∣∣∣∣ = ab > 0⇒ b < 0.

Then from (3) follows

aX2
1 (t) + bX2

2 (t) ≤ −‖G‖2 .

We find a solution of the stochastic system based on eigenvalues. λ1 = a,
λ2 = b. We substitute a = −α, α > 0, b = −β, β > 0. We give a solution of the system

X1(t) = C1e
−αt,

X2(t) = C2te
−βt,

C1, C2 are constants.

Corollary 3 We consider a symmetric matrix A in the form

A =

(
a b
b a

)
.

The matrix A will be negative definite under following conditions:

D1 = a < 0,
D2 = a2 − b2 > 0⇒ |a| > |b|

}
i.e. must be valid |a| > |b| > 0.
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Then from (3) follows

aX2
1 (t) + aX2

2 (t) + 2bX1(t)X2(t) ≤ −‖G‖2

a ‖X(t)‖2 + 2bX1(t)X2(t) ≤ −‖G‖2

The variable a must be sufficiently negative and also inequality

a ‖X(t)‖2 + 2bX1(t)X2(t) ≤ −‖G‖2

must be valid, then we can say that the system is stochastically stable.

We find eigenvalues of matrix A as the solution of the characteristic equation

det(A− λE) = 0,

where E is the unit matrix.

|A− λE| =
∣∣∣∣a− λ b

b a− λ

∣∣∣∣ = (a− λ)2 − b2 = 0,

(a− λ)2 = b2,

|a− λ| = |b| .

Eigenvalues are

−a+ λ1 = |b| ⇒ λ1 = a+ |b| ,
a− λ2 = |b| ⇒ λ2 = a− |b| .

We substitute a = −α, α > 0, |b| > 0, α < |b| , i.e.

λ1 = −α + |b| ,
λ2 = −α− |b| .

For the eigenvalue λ1 = −α + |b| we find the eigenvector

v1 = (v11, v12).

There is any nonzero vector which fulfills a following relation

(A− λ1E) v1 = 0(
a− (a+ |b|) b

b a− (a+ |b|)

)
v1 = 0

15



For b > 0 we choose an arbitrary vector v1 = (1, 1)T , for b < 0 we choose v1 = (−1, 1)T .

Then

for b > 0 is X1(t) = (1, 1)T e(−α+b)t

for b < 0 is X1(t) = (−1, 1)T e(−α+b)t

For the eigenvalue λ1 = −α− |b| we find an eigenvector

v2 = (v21, v22)

(A− λ1E) v2 = 0(
a− (a− |b|) b

b a− (a− |b|)

)
v2 = 0

For b > 0 we choose an arbitrary vector v2 = (1,−1)T , for b < 0 we choose v2 = (1, 1)T .

Then

for b < 0 is X2(t) = (1, 1)T e(−α−b)t

for b > 0 is X2(t) = (1,−1)T e(−α−b)t

The general solution is given by a linear combination Xt = C1X1(t) +C2X2(t), with arbitrary
constants C1, C2.

Corollary 4 We consider a symmetric matrix A in the form

A =

 a 0 b
0 a 0
b 0 a

 .

The matrix A will be negative definite under following conditions:

D1 = a < 0,
D2 = a2 > 0, D2 follows from D1,
D3 = a3 − ab2 < 0⇒ a(a2 − b2) < 0⇔ a < 0 ∧ a2 > b2,

⇒ |a| > |b| .
We find eigenvalues of matrix A as the solution of the characteristic equation

∣∣∣∣∣∣
a− λ 0 b

0 a− λ 0
b 0 a− λ

∣∣∣∣∣∣ = 0,
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(a− λ)3 − (a− λ)b2 = 0,

(a− λ)((a− λ)2 − b2) = 0⇔ (a− λ) = 0 ∨ (a− λ)2 − b2 = 0,

λ1 = 0⇒ X1(t) = e0 = 1,

λ2 − 2aλ+ (a2 − b2) = 0,

λ2,3 =
2a±

√
4a2 − 4(a2 − b2)

2
⇒ λ2,3 = a± |b| .

We substitute a = −α, α > 0, |b| > 0, α > |b| , i.e.

λ2 = −α + |b| ,
λ3 = −α− |b| .

For the eigenvalue λ2 = −α + |b| we find the eigenvector

v2 = (v21, v22, v23).

There is any nonzero vector which fulfills a following relation

(A− λ2E) v2 = 0 a− (a+ |b|) 0 b
0 a− (a+ |b|) 0
b 0 a− (a+ |b|)

 v2 = 0

For b > 0 we choose an arbitrary vector v2 = (1, 0, 1)T , for b < 0 we choose v2 = (1, 0,−1)T .

Then

for b > 0 is X2(t) = (1, 0, 1)T e(−α+b)t,

for b < 0 is X2(t) = (1, 0,−1)T e(−α+b)t.

For the eigenvalue λ3 = −α− |b| we find an eigenvector

v3 = (v31, v32, v33),

(A− λ3E) v3 = 0, a− (a− |b|) 0 b
0 a− (a− |b|) 0
b 0 a− (a− |b|)

 v3 = 0.
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For b > 0 we choose an arbitrary vector v3 = (1, 0,−1)T , for b < 0 we choose v3 = (1, 0, 1)T .

Then

for b < 0 is X3(t) = (1, 0, 1)T e(−α−b)t,

for b > 0 is X3(t) = (1, 0,−1)T e(−α−b)t.

The general solution is given by a linear combination Xt = C1X1(t) + C2X2(t) + C3X3(t),
with arbitrary constants C1, C2, C3,

for b > 0 is Xt = C1 + C2

 1
0
1

 e(−α+b)t + C3

 1
0
−1

 e(−α−b)t,

for b < 0 is Xt = C1 + C2

 1
0
−1

 e(−α+b)t + C3

 1
0
1

 e(−α−b)t.

Note: It is a solution of differential equation without a stochastic element. We have demonstra-
ted the matrix A must be dominant for the stability of the system,

‖A‖ � ‖G‖ .

2.1 Examples
Example 1 We have stochastic differential equation in the form

d

(
X1(t)
X2(t)

)
=

(
0 −1
1 0

)(
X1(t)
X2(t)

)
dt+

(
1 0
0 1

)(
dB1(t)
dB2(t)

)
. (4)

We determine stability of solution using derivation of Lyapunov function

dV

(
X1(t)
X2(t)

)
= 2X1(t)dB1(t) + 2X2(t)dB2(t) + 4dt,

E

{
dV

(
X1(t)
X2(t)

)}
= 4dt = LV dt.

Function LV = 4 > 0 is positive-definite. Trivial solution of system (4) is unstable.

Example 2 We have stochastic differential equation in the form

d

(
X1(t)
X2(t)

)
=

(
−2 1
−1 −2

)(
X1(t)
X2(t)

)
dt+

(
1 0
0 1

)(
dB1(t)
dB2(t)

)
. (5)
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We determine stability of solution

dV

(
X1(t)
X2(t)

)
= 2(−2X1(t)

2(t)− 2X2(t)
2(t)− 2X1(t)X2(t) + 2)dt

+ 2X1(t)dB1(t) + 2X2(t)dB2(t),

E

{
dV

(
X1(t)
X2(t)

)}
= 2(−2X2

1 (t)− 2X2
2 (t)− 2X1(t)X2(t) + 2)dt = LV dt.

Function is negative-definite for LV < 0, i.e.

2(−2X2
1 (t)− 2X2

2 (t)− 2X1(t)X2(t) + 2) < 0,

|X1(t) +X2(t)| >
√

1−X1(t)X2(t),

for X1(t)X2(t) ≤ 1, then trivial solution of system (5) is stable.

3 Conclusion
In this paper it was defined stability and stochastic stability of the stochastic differential equati-
ons. It was computed specific examples by using Lyapunov theorem. Such type of equations
can be used also in biomedical engineering, in meteorology, epidemic modeling, predicting
economics, etc.
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Abstract: The article is devoted to the problem of existence and construction of iterative 

roots of mappings of the sets into themselves and their possible use while solving tasks. The 

main part of the article is devoted to the application of the stated theory. First, the necessary 

and sufficient condition for the existence of iterative roots of all orders is given, further the 

condition is specified for the existence of the iterative root of order two.  
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INTRODUCTION 
 

The article is devoted to the iterative roots of set transformations and their use while solving 

tasks. Althought at first sight this topic seems to be considerably distant from the university 

mathematics teaching, the reverse is true. The substance of the existence and construction of 

iterative roots lies in the approach to mappings and functions from the discrete point of view, 

when we understand them as monounary algebras and represent them with the help of the 

vertex graphs. Such an approach enables effective solving of many problems and tasks from 

different mathematics areas. Moreover, in comparison with the classical approach to 

mappings and functions from the continuous perspective, it contributes to the deeper insight 

to its mathematical essence. The discrete interpretation of functions appears only seldom at 

the mathematics teaching at high schools and universities, although it can be extremely 

beneficial for participants in higher levels of the Mathematical Olympiad (see [4], [6], [12]). 

The considerations, which are used while formulating definitions, theorems and proofs in the 

iteration theory, especially the ones used when solving the problems of existence and 

construction of iterative roots of functions on finite sets, can be used as the suitable topic for 

students´ individual scientific activity while their mathematical abilities development. 

Students can thus discover their own numerous nontrivial results without studying formally 

complicated theories, too distant from the commonly discussed topics in the regular lessons. 

Now, let us remind some necessary terms and theorems from the functions iterative theory. 

 

1. ITERATIONS OF SET TRANSFORMATIONS, VERTEX GRAPHS 
 

The mapping f: X  X of the set X into itself will be called the transformation of the set X. 

For n  N0 let us define the n-th iteration f of the set X as follows:  

f 0(x) = x, f 1(x) = f(x), f n(x) = (f o f n-1)(x) for every x  X; in the shortened form f n = f o f n-1.  

 

If the transformation f is a bijective mapping of the set X into itself, the definition of the given 

set iterations can be broadened also for a non-negative integer n in the following way: let us 

denote   f 1 as an inverse function to the function f on the set X, then f 2 = f 1 o f 1, f n = (f 
1)n. It is necessary to distinguish between the notation of the n-th iteration of the function f, 

which is f n (the value of the iteration for the element x is f n(x)), and the expression [f(x)]n. 

mailto:beranek@ped.muni.cz
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 Every transformation f of the set X determines the equivalence ~f on X as follows: x ~f  y, if 

and only if there exists a pair of positive integers m, n that f m(x) = f n(y). The blocks of the 

decomposition of the set X determined by the equivalence ~f are called orbits of the 

transformation f, in short f-orbits. The set containing elements x, f(x), f 2(x), f 3(x), ... is called 

the iterative sequence starting in x or also the f-splinter of the element x.  

 

Let k be a natural number, then the cycle of the order k (k-cycle) of the mapping f: X X is 

the set {x0,x1,...,xk-1} of the set X elements for which there applies f(xm) = xm+1 for 0  m  k1 

and f(xk-1) = x0. The orbit containing a cycle is called the cyclic one, otherwise the acyclic 

one. For k = 1, the element x  X with the property f(x) = x is called the fixed point of the 

transformation f. For cyclic orbits, there is an important term of the depth of the element x 

(below the cycle) which is denoted h(x) and defined as the least non-negative number for 

which f h(x)(x) is the element of the cycle. All elements of the cycle are of the depth 0. 

     Let us give some orbit properties which will be further used (see [14]): 

 Every orbit contains at most one cycle. 

 The orbit is acyclic if and only if for its every element there applies that the corresponding 

iterative sequence contains infinitely many elements. 

 Every finite orbit is cyclic (the chain ending in the cycle is not infinite, although it 

contains infinitely many elements). 

In the case of the injective transformation f, the orbits are isolated cycles, two-sidedly infinite 

chains, or infinite chains bounded from below by the least elements; if f is a bijection, its 

orbits are either cycles or two-sidedly infinite chains. The set of orbites of the function f is 

also called the orbit structure. The graphic representation of the orbits is the vertex graph.  

Here follow illustrative examples. 

a) Let X = {1,2,3,...,8}, the transformation f is defined: f = 








88886444

87654321
.             

 

Fig.1. Vertex graph of transformation f defined by the matrix.  

b) Let X = R, for every x  X there applies f(x) = x. The only fixed point is number zero, for 

other elements of the set X there applies f 2(x) = x. The orbits of the function f are then one 

loop and uncountably many cycles of order 2. 

6

8

1 2 3

75

4



 

 

 

23 

 

 

Fig. 2. Vertex graph of transformation f(x) = x.  

c) Let X = R  {0}, for every x  X there applies f(x) = x1. For x  {1,1} there applies f(x) = 

x, for other elements of the set X there applies f 2(x) = x. The orbits of the function f are then 

two loops (fixed points) and uncountably many cycles of order 2. 

 

 

Fig. 3. Vertex graph of the transformation f(x) = x1.  

 

2. ITERATIVE ROOTS 

 

Let X  , let f be the mapping of the set X into itself, the number m  N, m  1. The main 

problem of the iterative theory is to find such an arbitrary mapping g of the set X into itself 

that for every element x of the set X there applies: 

gm = f 

The mapping g is called the iterative root of the order m of the function f or the m-th iterative 

root of the function f. Let us illustrate the term of the second iterative root in Fig. 4, where 

there are vertex graphs of transformations f, g of the set X = {1,2,3,4,5,6,7,8}.  











88888666

87654321
f ,  










88886444

87654321
g , there applies g2 = f. 

                 

Fig. 4: The mapping g is the second iterative root of the mapping f . 
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Now let us briefly outline the general theory of the existence and construction of the iterative 

roots. For the didactic purposes, it is fundamental that in special cases (real elementary 

functions, bijective functions, …) it is not necessary to apply complicated theorems of the 

general theory while solving functional equations of one variable, but there exists a more 

efficient solution. The following twelve theorems are taken from the publication [14], where 

you can find their proofs and other details.  

Theorem 1: Let X  ,  let f, g be such mappings of the set X that gm= f, m  N. Then the 

mapping g is surjective if and only if f is surjective. 

Theorem 2: Let X  , let f, g be such mappings of the set X that gm = f,  m  N. Then the 

mapping g is injective if and only if f is injective. 

Theorem 3: Let X  , let f, g be such mappings of the set X that gm = f,  m  N. Then the 

mapping g is bijective if and only if f is bijective. 

Theorem 4: Let g be the m-th iterative root (m N, m  2) of the mapping f of the non-empty 

set X. Then every g-orbit is the union of p f-orbits, where mp . If p  m, then g-orbits are n-

cyclic, and np . In addition, all f-orbits are 
p

n
-cyclic and at the same time the greatest 

common divisor (GCD) of numbers m, n equals p. 

Theorem 4 describes properties of iterative roots provided that they exist. Now let us state the 

general necessary and sufficient conditions for the existence of iterative roots.  

Definition: Let f be the mapping of the set X into itself, let r, m be natural numbers with the 

property mr . Let the mapping f contain at least r orbits and let there be given r f-orbits. These 

orbits will be denoted m-mateable (by any mapping g), if g is the m-th iterative root of the 

function f, if it has one orbit and represents the union of the given r f-orbits into themselves. 

For r = 1 this only f-orbit is called m-self- mateable. 

Theorem 5: If in the previous definition there applies r  m, then the necessary condition for 

the m-mateability of r f-orbits is the fact that each of them is k-cyclic (with the same k) and 

there applies that GCD (k,
r

m
) = 1. The corollary of this theorem is, among others, the fact 

that the acyclic              f-orbit cannot be m-self- mateable for any m.  

Theorem 6: An arbitrary mapping of a non-empty set has the m-th iterative root (m  N) if 

and only if the set of orbits of this mapping can be decomposed to disjoint blocks with 

following properties: 

1o  The number of orbits in each block is finite and it is the divisor of the number m. 

2o   Orbits in each block are m-mateable. 

Theorem 7: For the existence of the m-th iterative root (m  N, m  2) of the mapping f: X  

X it is sufficient if in the orbit structure of the function f there exist for each occurring orbit 

type either infinitely many orbits of such type or their number is divisible by the number m. 

Theorem 8: Let f be the bijection of any set into itself. Let us denote l0 the number of the two-

sidedly infinite chains, lk the number of the k-cycles of the mapping f, k  N. Then there 

exists the m-th iterative root (m  2, m  N) of the mapping f if and only if for every non-
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negative number k there applies either lk =  or dk|lk, where d0 = m, dk = 
km

m
(k  N), and mk 

denotes the greatest common divisor of the number m, which is coprime with the number k. 

Theorem 9: Let f: X  X be the bijection such that for every k  N0 there applies either lk = 0 

or  lk =   (according to the notation of Theorem 8). Then f has the m-th iterative root for 

every natural number m. For the orbits of this iterative root there also applies either l
k
=0 or 

l
k
=  for all k N0. 

Theorem 10: Every strictly increasing and continuous bijection R on R has iterative roots of 

all orders. 

Theorem 11: The strictly decreasing and continuous bijection of the set R has iterative roots 

of all orders if and only if it has either infinitely many 2-cycles or none. 

Theorem 12: Every strictly decreasing and continuous bijection R has iterative roots of all odd 

orders. 

 

3. USE OF ITERATIVE THEORY – EXAMPLES 

 

All following poroblems are taken from publications [4] and [6]. 

Problem 1: At the 28th International Mathematical Olympiad in 1987 in Havana there was set 

the following task: 

     Prove that there is no function f from the set of non-negative integers (N
0 = {0, 1, 2,...}) 

into itself such that f(f(n)) = n + 1987 for every n N
0
.. 

Let us use the iterative theory. The function (x) = x + 1987 is not a bijection on the set N
0
, 

but it is injective. It does not have fixed points, its orbits are mutually isomorphic chains 

bounded from below. There are 1987 chains, their least elements are 0, 1, ..., 1986. The vertex 

graph is outlined in Fig. 5: 

 

Fig. 5. Vertex graph of function (x) = x + 1987.  

The difficulty of this task is to prove that the function  does not have the second iterative 

root, i.e. that the -orbits are not 2-mateable. The main idea of this proof is the fact that there 

is an odd number of orbits. The orbits are not cyclic, therefore, according to Theorem 5, they 

cannot by self-mateable. According to Theorems 5 and 6, for the existence of the second 

iterative root the number of -orbits have to be even (orbits can be mated only in pairs). This 

is not true, so the function  does not have the iterative root of order 2.  

Note: With the help of iterative theory it is possible to generalize the Problem 1. The first 

question is if the function (n) = n + 1987 has any own iterative roots (of the order greater 

0 1

1987

3974

1988

3975

2

1989

3976

1986

3973

5960
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than 1). With respect to Theorems 5 and 6 it is obvious that we are searching the possibility of 

the mating of the existing 1987 orbits. As 1987 is a prime number, the only possible own 

iterative root is the root of order 1987. Then there exists the function f: N
0
 N

0 with the 

property f 1987(n) = n +1987, n N
0
. This function f is the successor function 0 on N

0
, 

defined by the formula f(n) = n +1. The next question is to find out if there are own iterative 

roots of the function (n) = n + c, n  N
0
, c  N. The vertex graph now contains just c 

isomorphic orbits (chains bounded from below with the least elements 0, 1,..., c  1). These 

chains have to be mated. Similarly as above, there always exists the iterative root of the order 

c (which is the function f(n) = n + 1). Further, there always exist iterative roots of these 

orders which are the dividers of the number c. Therefore, the iterative root of the order 2 

exists if the number c is even. If the Problem 1 were set for the function f(n) = n + 1988, the 

second iterative root would exist (further there would exist iterative roots of orders 4, 7, 14, 

28, 71, 142, 284, 497, 994, 1988). Let us illustrate the whole situation for c = 2. 

Problem 2: Prove that there exist just two functions in N
0
 which satisfy the formula  

f 
2
(n) = n + 2. 

The vertex graph of the function (n) = n + 2 contains just two orbits (the chains of even and 

odd non-negative integers). From the general theory there follows that the only possible own 

iterative root is the one of the order 2. The orbits are not 2-self- mateable, so it is necessary to 

mate them together. The decomposition of the orbit set to the blocks by two orbits is the only 

one possible; the order of the orbits is important while mating them, so there are just two 

possibilities of the mating. Both functions are represented by the following formulas and 

shown in Fig. 6. 

f1(n) = n + 1, n  N
0     f2(n) = 









.3

,1

evennforn

oddnforn
,  n  N

0. 

 

Fig 6. Solution of Problem 2. 

Problem 3:  Problem from the 20th International Mathematical Olympiad in Romania in 1978. 

 

" Prove that there exist the function f: N  N satisfying the equation f(f(n)) = n
2 ." 

 

First, let us give the author solution without a commentary. Let there be the sequence nk, k = 

1, 2, ..., where  n
1 

= 2, n
2 

= 3, n
3 

= 5, ..., which contains all natural numbers which are not the 

squares of an integer, in the natural ordering. Let us set n
k,m = 

m2
k )n( for k  N, m  N. Then 

there holds n
k,m+1 =

1m2
k )n(



= [
m2

k )n( ]
2 = (n

k,m
)
2
, and for any n  2 there exists the only pair 
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of numbers k, m with the property n = n
k,m

. Let us now define f(n) as follows: f(1) = 1, for k 

odd f(n
k,m

) = n
k+1,m

, for k even f(n
k,m

) = n
k-1,m+1

. Then there applies f
2
(n) = n

2
. 

 

The solution with the help of the iteration theory. Fig. 7 illustrates the vertex graph of the 

function q(n) = n
2 in the set N. The vertex graph contains one isolated fixed point n = 1 and 

countably many infinite chains bounded from below. For every m N, m  2 there holds f 
m
(1) =1, so the fixed point x = 1 is always m-self-mateable. Further, the set of chains can be 

decomposed into blocks by two, in each block the chains are 2- mateable. Therefore, the 

second iterative root of the function q(n) = n
2  in N does not exist. 

 

Fig. 7. Sollution of Problem 4.  

Properly speaking, the author solution is only a formal mathematical description of the 

solution with the help of the vertex graph (by mating the chains). 

Problem 4:  Problem from the Mathematical Olympiad Correspondence Seminar 1983/84. 

"Let f, g be mappings of the set A into itself. Let us call the function f as the n-th functional 

root g (n  N), if f 
n
(x) = g(x) for every x  A. Let us define f

 1(x) = f(x),  f n+1(x) = f [f 
n
(x)].  

a) Prove that the function g mapping the set R
+ into itself and defined by the formula g(x) = 

x

1
 has infinitely many n-th functional roots for every n  2. 

b) Prove that there exists the injective mapping R into R, which does not have the n-th 

functional root for any n  2." 

For the sake of authenticity, the wording of the task is in the original version, although now 

the term functional root is replaced by the term iterative root.  

a) The vertex graph of the function g(x) =
x

1
 in R

+ contains one fixed point x = 0 and 

uncountably many 2-cycles. For every n  N, n  2 they can be decomposed into blocks by n 

2-cycles, in every block the 2-cycles are mutually n- mateable. As the fixed point (in the 

orbital structure represented by the loop) is self- mateable for any n, there follows the 

existence of the   n-th iterative root for every n. The above described decomposition of the set 

of 2-cycles into blocks can be performed for any n in uncountably many ways, so for every n 

 N, n  2 there exist uncountably many n-th iterative roots.  

1

2 3 5 6 7
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b) The vertex graph of the bijection contains only cyles and two-sidedly infinite chains. From 

the general theory there follows that for the bijective mapping not to have any own iterative 

roots there suffices if its set of orbits contains just one two-sidedly infinite chain. Let us 

consider the function f(x) = x + 1 for every x  Z, f(x) = x for x R Z. This mapping f 

contains the only one two-sidedly infinite chain and infinitely many loops. 

 

4. ITERATIVE ROOTS OF FINITE SETS TRANSFORMATIONS 

 

Further, we will consider the question of the existence and construction of iterative roots of 

the transformations of finite sets. We will show that in the case of finite sets it is not 

necessary to apply the general theory (Theorems 1 – 12), but it is possible to proceed in a 

different way. In the next text the finite set will be denoted as X. The monoid of all 

transformations of the set X wil be denoted as T(X), the symmetric group (the group of 

permutations) of the set X will be denoted as G(X). 

 

Let us first give the characterization of finite sets which have iterative roots of all orders. It 

can be easily proved (see e.g. [9]) that identity is the only permutation of finite sets with such 

a property. The situation is more difficult for non-bijective mappings. Let us remind that h(x) 

denotes the depth of the element x in the given f-orbit. 

Theorem 13: (see [9]) Let X be a finite set. If the transformation f of the set X has an iterative 

root of the order m = GCD {1,2,...,card X}, then there applies f 
2
= f (and therefore f is its r-th 

iterative root for every r  N). 

Proof: First, let us show that for every transformation g  T(X) there holds g
2m

 = g
m
. As for 

any x  X there holds h(x)  card X  1, the element g
m
(x) belongs to the cycle of the mapping 

g for m = NSN {1, 2,..., card X}. The order of an arbitrary cycle is at most equal card X, m is 

the multiple of the order of all cycles, so for every x  X  lying in some of the cycles of the 

transformation g there holds g
m
(x) = x. Further there follows g

2m
(x) = g

m
[g

m
(x)] = g

m
(x) for 

any x  X, so for every g  T(X) there holds g
2m

 = g
m
. Based on the premise about the 

existence of the m-th iterative root of the transformation g there holds f
2
 = (g

m
)
2
= g

2m
= g

m
= f. 

Corollary: (see [9]) The transformation f of the finite set X has iterative roots of all orders if 

and only if f 
2
= f . Then it is its own iterative root of an arbitrary order. (The example of the 

vertex graph of the transformation with the given property is in Fig. 8) 

 

Fig. 8: Example of orbit types of set transormations f with property f 2= f .  

 

Proof: Let f 
2
= f; then f 

r
 = f for every r  N, so f is its own iterative root of any order. On the 

contrary, let f have iterative roots of all orders. Then specially it has the root of the order m = 

GCD{1, 2,...,card X} and from the previous Theorem there folows f 
2
 = f. 
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In the next part of the article we will limit ourselves only to the question of the second 

iterative roots of finite mappings. Such a restriction to the only order (m=2) enables the far 

more accurate characterization of the appropriate final mappings. Let us remind that this 

problem was dealt with mainly by M. Snowdon and J. Howie in [13]. Because of the didactic 

character of the article and its extent, we will not give proofs to the theorems stated further. 

All of them can be found in the above mentioned article [13]. Let us introduce the following 

denotation. Let X be a finite set, f be a transformation on X. Then 
f
 is an equivalence relation 

on X corresponding to f, so there applies: (x,y) 
f 
 f(x)= f(y). The set G(X) with the 

operation of the mapping composition is a symmetric group of the permutations of the set X. 

If f  G(X), then also g:X X with the property g
2
 = f has to belong to G(X) (see [14]). The 

question of the existence of the second iterative roots in G(X) can be solved separately. Let us 

remind that the orbit structure of each permutation f  G(X) contains only cycles. For any 

transformation f  T(X) of the finite set X then holds that each its orbit is cyclic.  

Theorem 14: Let X be a finite set. The element f  G(X) is the second iteration of some 

permutation if and only if for every even number k the orbit structure of the permutation f 

contains the even number of k-cycles.  

Definition: Let f be the transformation of the finite set X. Let k be the least non-negative 

integer with the property f 
k
(X) = f 

k+1
(X) = ... . Then this number is called the contract 

coefficient of the transformation f and is denoted as cont f. The subset f 
k
(X)  X is called the 

stable range and is denoted as stran f. It is evident that cont f equals the maximum depth of 

the element below the cycle in the orbit structure of the transformation f. Stran f is then the 

union of the cycles of the transformation f, i.e. fstran f is the permutation of stran f. 

Definition: We will say that f  T(X) is the quasi-quadratic element in T(X) (or shortly the 

quasi-quadrate), if the permutation fstran f has the second iterative root in the group G(stran 

f). 

Theorem 15: If f  T(X) has the second iterative root in T(X), then f is the quasi-quadratic 

element in T(X). 

Example 1: Let X = {1,2,...,9}, the mapping f = 








798983432

987654321
,  the vertex 

graph is shown in Fig. 9. Stran f = f 
2
(X) = {3, 4, 7, 8, 9}, cont f = 2, f|stran f = (3 4).(7 8 9). 

As f|stran f does not have the second iterative root (only one 2-cycle), f is not the quasi-

quadrate and therefore the second iterative root does not exist. 

 

Fig 9: Vertex graph of mapping f from Example 1.  
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The previous Theorem 15 cannot be reversed. Nevertheless, the reversed theorem applies in 

the special case. 

 

Theorem 16: Let f  T(X), cont f = 1. Then f has the second iterative root in T(X) if and only 

if f is the quasi-quadratic element in T(X). 

 

Theorem 15 is only the necessary condition for the existence of the second iterative root, 

Theorem 16 determines the necessary and sufficient condition with the premise cont f =1. The 

general necessary and sufficient condition is given in the article [13]. We will now give this 

condition and supply it with examples applying the general theory. Let us remind that h(x) 

denoted the depth of the element x below the cycle and further that examining the existence of 

the second iterative root of the transformation f can be performed only for quasi-quadratic 

transformations (Theorem 15). For every discussed transformation f of the finite set X we can 

suppose that f|stran f has the second iterative root.  

 

Definition: Let f be the transformation of the finite set X, let x  X  f(X) be an arbitrary 

element. Then the element y  X  f(X) is called -dual to the element x, if there exists such 

the second iterative root  of the set f|stran f for which there applies one of the following four 

conditions:  

(1) h(x) = h(y)            [ f h(x)(x) ]  =  f  h(y) (y),  

(2) h(x) = h(y)            [ f h(y)(y) ]  =  f  h(x) (x),  

(3) h(y) = h(x) + 1     [ f h(x)(x) ]  =  f  h(y) (y),   

(4) h(y) = h(x)   1     [ f h(y)(y) ]  =  f  h(x) (x) .  

It is evident that the relation  duality is symmetric; then it is possible to consider the elements 

x, y as mutually  dual regardless of the order. All pairs of the  dual elements are the 

elements of the set X  f(X), called basic elements. Precisely speaking, the element x is the 

basic element if and only if it suffices the condition (f  1  f)(x)  f(X) =  .  

Definition: We wil say that the transformation f of the finite set X is amenable if it is the 

quasi-quadratic element in T(X) and if there exists the iterative root  of the restriction f|stran f  

with the property that to each basic element of the set X  there exists the  dual element.  

We have already given the definition of the equivalence f   corresponding to the 

transformation f. The set of all basic elements can be decomposed into blocks of mutually 

equivalent basic elements. All elements in each of these blocks have the same image, the 

same depth below the cycle, and therefore the same  dual element. In the next considerations 

we will always choose one element from each of the blocks of equivalent basic elements. The 

set of the chosen elements will be denoted as B(f). Let  be the second iterative root of the 

transformation f|stran f. On the set B(f) let us define the mapping :B(f)   X f(X) as 

follows: Every x  B(f)  will be assigned the element which is  dual to it in X  f(X). The 

mapping  will be called the dualizing mapping because in fact for each pair of elements (x,y) 

  there holds that they are -dual. Now, for each pair (x,y)   let us denote two “iteration 

routes”: 

(x,y)(1)  = {(x, y), (y, f(x)), (f(x), f(y)), (f(y), f 2(x)), (f 2(x), f 2(y), …},  

(x,y)(2) = {(y, x), (x, f(y), (f(y), f(x)), (f(x), f 2(y)), (f 2(y), f 2(x)), … } . 



 

 

 

31 

 

As the set X is finite, the number of elements of the sets (x,y)(1), (x,y)(2) is finite. Let A be any 

subset of the mapping . Let us now define the relation A as follows: 

 A = 
A)y,x(

)2(

A)y,x(

)1( )y,x()y,x(





. If there exists the subset A  , for which the relation A 

is unambiguous, then the mapping  is called the compatibly dualizing mapping.  

Definition: Let us say that the transformation f of the finite set X is compatibly amenable if it 

is amenable and there exists the compatibly dualizing mapping .  

Theorem 17: Let X be a finite set, let f T(X). Then f has the second iterative root  f is 

compatibly amenable.  

Using this Theorem, the proof of which can again be found in [13], it is possible to decide 

theoretically unambiguously if the given transformation of the finite set has the second 

iterative root. However, the given theorem is quite complicated and its practical usage is 

possible only for transformations of finite sets with a small number of elements. From the 

didactic point of view, let us now show an example of the application of Theorem 17. We will 

show that the obtained relation A is exactly the base of the second iterative root of the 

transformation f, so it is possible to use Theorem 17 not only for solving the question of the 

existence of the second iterative root, but also for its construction. The next Theorem is useful 

while searching for the compatibly dualizing mapping : 

Theorem 18: a) The compatibly dualizing mapping   is bijective (it cannot be reversed). 

b) Let x1, x2, y1, y2 be different elements of B(f) such that every element y1, y2 is  dual to every 

element x1, x2. If the mapping  contains pairs (x1, y1), (x2,, y2), (y1, x2), (y2,,x1), then it is not 

compatibly dualizing. 

 

Example 2: Let X = {1,2,3,…,18,19}, let the transformation f be determined by the matrix:  

f = 








419181721514141431091772143

19181716151413121110987654321
. 

The vertex graph of the transformation f is in Fig. 10. 

 

Fig. 10: Vertex graph of mapping f from Example 2.  

The transformation f is the quasi-quadratic element in T(X), because it contains just two 

cycles of the order 2 (Theorem 14). These cycles are (1, 3), (2, 4), cont f = 4, stran f = 

{1,2,3,4}, the iterative quasi-quadratic root  on stran f  is defined by the matrix 










1432

4321
. The classes of equivalent basic elements are {5,6}, {8}, {11,12, 13}, {16}. 
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Each of the elements of the set {5, 6} is  dual to each of the elements {11, 12, 13}, elements 

8 and 16 are also  dual. Therefore, the mapping f is amenable. The set B(f) will be chosen as 

{5, 8, 11, 16}. The dualizing mapping  is defined by the matrix 








851611

161185
. Now let 

us describe the routes for all pairs of elements of the mapping . As we will soon find out, in 

fact it is enough to describe the routes with the exponent (1): 

(5,11)(1)  = (11,5)(2)  = {(5,11), (11,7), (7,14), (14,1), (1,15), (15,3), (3,2), (2,1), (1,4), (4,3)}, 

(11,5)(1)  = (5,11)(2)  = {(11,5), (5,14), (14,7), (7,15), (15,1), (1,2), (2,3), (3,4),  (4,1)}, 

(8,16)(1)  = (16,8)(2)  = {(8,16), (16,9), (9,17), (17,10), (10,18), (18,3), (3,19), (19,1), (1,4), 

(4,3), (3,2), (2,1)}, 

(16,8)(1)  = (8,16)(2)  = {(16,8), (8,17), (17,9), (9,18), (18,10), (10,19), (19,3), (3,4), (4,1), (1,2), 

(2,3)}. 

The relations (11,5)(1) a (16,8)(1) are unambiguous, so we will denote A = {(11,5), (16,8)}. The 

relation A ={(11,5), (5,14), (14,7), (7,15), (15,1), (1,2), (2,3), (3,4), (4,1), (16,8), (8,17), 

(17,9), (9,18), (18,10), (10,19), (19,3)} is unambiguous, so  is the compatibly dualizing 

mapping and f is compatibly amenable. The desired second iterative root g of the 

transformation f is defined as               A. It is again given by the matrix (and illustrated by 

Fig. 11). 

g = 








31098175551918171514141432

19181716151413121110987654321
. 

 

Fig. 11: Vertex graph of mapping g. There holds g 2 = f. 

 

 

 

 

7

1

18

10

19

3

15

9

4

2

11 12 13

14

65

8

17

16



 

 

 

33 

 

CONCLUSION 

The article introduces the general theory of iterations of set transformations and gives basic 

theorems describing the questions of the existence and construction of their iterative roots; 

further there is stated the necessary and sufficient condition for the existence of the second 

iterative root of mappings defined on finite sets. The text is complemented with the possible 

usage of the above described theory while solving problems from the high school 

mathematics. From the didactic point of view, it is possible to conclude that despite a certain 

formal complexity (the proofs are quite complicated), these problems can be solved with 

talented students, and that understanding of the essence of the given theory can develop the 

students´ mathematical abilities and thinking processes. Among others, the ability to 

“deciphre” and study the formally complicated mathematical text is also extremely 

significant. The familiarity with vertex graphs of mappings of finite sets (including vertex 

graphs of functions defined on infinite sets) contributes to the better understanding of the 

substance of relations, mappings and functions in the classical continuous approach. 
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Abstract: The mean first passage times matrix (MFPTM) is one of the principal characteristics
of Markov chains. Direct algorithms for its computing are known. The first one was introduced
by C. D. Meyer and later M. Neumann brought some improvements. Other enhancements and
a reduction in the number of operations come from P. Mayer. The first and second approaches
require the inversion of a full matrix of size n or of two matrices of size n/2, respectively. The
third approach inverts a sparse matrix of size n with taking advantage of an appropriate LU
decomposition. A problem with efficiency occurs in particular in the case that only a small part
of the MFPTM is required, because all the elements of the matrix are necessary to be determi-
ned, in principle. An iterative aggregation-disaggregation method (IAD) is successfully used for
computing stationary probability distributions. This paper deals with the use of an IAD method
for computing a part of the MFPTM. Conditions under which the IAD method can be used, are
examined.

Keywords: Markov chains, mean first passage times matrices, iterative aggregation-disaggregation
methods, numerical methods.

Introduction
The basic motivation for the study of homogeneous Discrete Time Markov Chains (DTMC) is
a quantitative risk and reliability analysis for Railways signaling systems, see [6] and [4], [5]. The
probability characteristic of the transitions to these classes is the issue of the risk analysis. This is
the reason why it is necessary for us to study DTMC. In this paper we confine our considerations
to irreducible homogeneous finite DTMC.

We show some possibilities for computing stationary probability vectors in the case of an
irreducible transition matrix and one method for computing the MFPTM.

What is new in this paper: Firstly, generally use aggregation-disaggregation algorithm for
calculating columns of MFPTM (just aggregation-disaggregation approach is emphasized, co-
lumn access is already described in [8]). Further, aggregate calculation of a block of MFPTM in
case of a certain form of the transition matrix.

1 Basic Concepts and Characteristics of DTMC
The symbol E is used for the matrix of all ones and e for the column vector with all elements
equal to 1. The dimensions of E and e will always be clear from the context. Let for any matrix
Y ∈ Rn×n, Yd denote the n× n diagonal matrix whose diagonal entries are the corresponding
diagonal entries of Y.
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Definition 1 Let elements of T ∈ Rn×n be non negative and T e = e, where e = (1, . . . , 1)T ∈
Rn. Then we say that T is a stochastic matrix.

Definition 2 A finite Markov chain is a stochastic process moving through a finite number of
states and for which the probability of entering a certain state depends only on the last state
occupied.

Suppose that {Xm |m = 0, 1, . . . } is a finite homogeneous Markov chain on the states
S1, . . . , Sn. Let T ∈ Rn×n be its corresponding transition matrix. More information on sto-
chastic processes and Markov chains can be found in [1], [11]. From our point of view we are
interested in times which are necessary for transitions from a state to a state.

Definition 3 Let T be a stochastic matrix. The vector π ∈ Rn is called the stationary probability
vector (SPV) if πT = πTT, πTe = 1.

The existence and uniqueness of SPV are studied in [1], [11].
We introduce the probabilities of changes from a state to a state in terms of matrices as

follows

Definition 4 We denote by f (l)
ij the probability of the first come to the state j after leaving the

state i and it occurs exactly in l time steps. Let us denote by fij the total probability of the
transition from the state i to the state j, i. e. fij =

∑∞
l=1 f

(l)
ij . Let us define F = (fij)

n
i,j=1 and

F(l) = (f
(l)
ij )

n
i,j=1.

The correctness of the definition fij follows from the independence of events with probabi-
lities represented by f (l)

ij . Situation when fij is equal to 1 occurs only in a special case. In our
case we are considering only irreducible chains, therefore, fij is equal to 1 always occurs.

Let us introduce a model example illustrating the theme. Consider a chain as in Figure 1.

a

b c

de

g f

j

i

h

Fig. 1: The Markov chain.

with the transition matrix T
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a b c d e f g h i j

T =

a
b
c
d
e
f
g
h
i
j



· 0.2 · · · 0.8 · · · ·
· · 0.3 · 0.7 · · · · ·
· · · 1 · · · · · ·
· · 0.5 · 0.5 · · · · ·
0.4 · · 0.6 · · · · · ·
0.1 · · · · · 0.9 · · ·
· · · · · 0.8 · · · 0.2
· · · · · · 1 · · ·
· · · · · · · 1 · ·
· · · · · · · · 1 ·



(1)

Then the corresponding SPV is

π =
(
0.039620, 0.007924, 0.016640, 0.028526, 0.019810,

0.316957, 0.356377, 0.071315, 0.071315, 0.071315
)

(2)

According to a well-known theorem of Kolmogorov, (Tp)ij is the probability that the tran-
sition from the i−th state to the j−th state occurs just (but not necessarily for the first time) in
the p−th step. For l ≤ p, consider the probability that the transition from the state i to the state
j occurs for the first time just in the l−th step and then in l− p steps the transition follows back
to the state j.

We add it for l from 1 to p and then we can write (see also [11])

(Tp)ij =

p∑
l=1

f
(l)
ij

(
T(p−l))

jj

which implies

f
(p)
ij = (Tp)ij −

p−1∑
l=1

f
(l)
ij

(
T(p−l))

jj
.

It is in the matrix form

Tp =

p∑
l=1

F(l)
(
T(p−l))

d
, (3)

F(p) = Tp −
p−1∑
l=1

F(l)
(
T(p−l))

d
. (4)

The total probability of the transition from the state i to the state j can be considered as the
sum of the probability of the transition from the state i to the state j in one step and the sum
of probabilities of the transition from the state i to the state k, different from j, in one step and
from the state k to the state j. Then we can write

fij = tij +
∑
k 6=j

tik fkj, (5)

since T is the transition matrix of a homogeneous Markov chain and the formula (5) represents
one step of the chain applied from the state i to the state j.
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Rewritten in the matrix form, we obtain

F = T + TF−TFd = T(F− Fd) + T. (6)

If the transition matrix T is irreducible then F = E and it expresses the sure event. In other
words, any transition is possible.

Definition 5 We denote by mij the mean first passage time of the transition from the state i to
the state j, i. e. mij =

∑∞
l=1 lf

(l)
ij . Let us define M = (mij)

n
i,j=1.

When we read Definition 5, from another point of view, we can see that each elementmij , which
is called the first statistical moment of the transition, is equal to the weighted mean of the lengths
with their relative frequencies, which are their probabilities, as their weights.

In a similar way as for F in (6), we get a formula for computing the MFPTM in the matrix
form

M = T + T(F− Fd) + T(M−Md)

and if we apply the identity T + T(F− Fd) = F from (6), we get

M = T(M−Md) + F. (7)

To our knowledge, if T is irreducible, i. e. F = E is the matrix of all 1s, the previous equality
is well known. For a stationary vector π

πMd = πF.

In case of T irreducible, the last expression is just the well-known renewal theorem. In such
case, there is πimii = 1, i. e.

mii =
1

πi
.

According to Meyer [9], the mean first passage matrix M (note that if there is necessary to
emphasize that M corresponds to the transition matrix T we use the notation MT) is given by

M = [I−Q# + E Q#
d ]Π

−1, (8)

where Q = I−T, where Q# is the group (generalized) inverse of Q, i. e.

Q# = (I−T)# = (I−T + e πT)−1 − e πT

and where Π is the diagonal matrix whose diagonal entries are the corresponding entries of π.
The mean first passage times matrix for our model chain is

a b c d e

M =

a
b
c
d
e
f
g
h
i
j



25.240000 117.000000 199.333333 165.277777 119.200000
9.200000 126.200000 82.333333 48.277777 2.200000
11.000000 128.000000 60.095238 1.000000 4.000000
10.000000 127.000000 59.095238 35.055555 3.000000
7.000000 124.000000 116.190476 67.111111 50.480000
28.000000 145.000000 227.333333 193.277777 147.200000
30.000000 147.000000 229.333333 195.277777 149.200000
31.000000 148.000000 230.333333 196.277777 150.200000
32.000000 149.000000 231.333333 197.277777 151.200000
33.000000 150.000000 232.333333 198.277777 152.200000
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f g h i j

3.550000 5.055555 18.077777 17.077777 16.077777
12.750000 14.255555 27.277777 26.277777 25.277777
14.550000 16.055555 29.077777 28.077777 27.077777
13.550000 15.055555 28.077777 27.077777 26.077777
10.550000 12.055555 25.077777 24.077777 23.077777
3.155000 1.505555 14.527777 13.527777 12.527777
2.000000 2.804444 13.022222 12.022222 11.022222
3.000000 1.000000 14.022222 13.022222 12.022222
4.000000 2.000000 1.000000 14.022222 13.022222
5.000000 3.000000 2.000000 1.000000 14.022222



(9)

2 IAD Algorithm
We introduce an aggregation mapping

g : {1, . . . , N} → {1, . . . , n}, n� N,

where n is the size of the coarse space.
The indices which are mapped to the same values of g define one aggregation group. The

optimal choice of mapping g is difficult and often depends on further information about the
solved problem. Distinctions between two choices of g for the same transition matrix can be
substantial.

Consider the aggregation mapping

g : {1, 2, 3, 4, 5} → 1, g : 6→ 2, g : 7→ 3,

g : 8 → 4, g : 9→ 5, g : 10→ 6. (10)

By means of aggregation mappings we define the restriction and prolongation matrices.
The restriction matrix R ∈ RN×n is defined by nonzero elements

rg(i),i = 1,

i. e. (R x)j =
∑N

i=1,g(i)=j xi.

The restriction matrix to the model chain is

R =


1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 (11)

The prolongation matrix S(x) is parameterized by a vector x ∈ RN; the nonzero elements
of the matrix are

(S(x))i,g(i) =
xi

(R x)g(i)
,

it means that (S(x) z)i = zg(i) xi/(R x)g(i).
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The prolongation matrix for the model chain is

S(x) =



0.352113 0 0 0 0 0
0.070043 0 0 0 0 0
0.147887 0 0 0 0 0
0.253521 0 0 0 0 0
0.176056 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(12)

Let us denote by A(x) = R TT S(x) the aggregated matrix defined by the vector x and by
the aggregation mapping g. Some properties of the matrix A(x) are introduced in the following
lemma.

Lemma 1 Let T be a stochastic matrix, let g be an aggregation mapping and x ∈ RN such
that x ≥ 0 and R x > 0. Then the aggregated matrix A(x) is a column stochastic matrix. If the
matrix T is irreducible and the vector x is strictly positive, then A(x) is irreducible.

With the previous knowledge we can define the following IAD algorithm for an irreducible
stochastic matrix T and for a positive initial approximation xinit. Suppose that matrices W1 and
W2 form the regular splitting of the matrix I−TT. It means that I−TT = W1 −W2, where
W1 is a M−matrix and where W2 is a nonnegative matrix.

Algorithm IAD (input: T, W1, W2, xinit, ε, g, s; output: x)
1. k := 1, x1 := xinit

2. while ||TT xk − xk|| > ε do
3. x̃ := (W−1

1 W2)
s
xk

4. A(x̃) := R TTS(x̃)
5. solve A(x̃) z = z and eT z = 1
6. k := k + 1
7. xk = S(x̃) z
8. end while

The convergence theory for IAD can be found in [7].

3 Alternative Computation of M

3.1 Algorithm for Computing M by Parts
This algorithm is included here for the sake of completeness. In full, this is introduced in [3].

Consider an irreducible stochastic transition matrix T of order n. We assume, without loss
of generality, that T has the partitioned form

T =

 T11 T12

T21 T22

 , (13)
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where T11 and T22 are square matrices such that the sum of their orders gives n and the other
blocks are submatrices of corresponding dimensions. A vector x ∈ Rn is partitioned into blocks
x1 and x2 conformably to partitioning of T.

The Perron complement of T11 in T is given by

P(T/T11) = T11 + T12(ρ(T)I−T22)
−1 T21, (14)

where ρ(·) denotes the spectral radius of a matrix. Note that from the well-known Perron-
Frobenius Theorem we know that ρ(T) = 1. (Since T is irreducible, ρ(T) > ρ(T22), so that the
expression on the right hand side of (14) is well defined.) For more details see [3]. Note that as
T is supposed to be irreducible, then all complements are stochastic and irreducible matrices.

We denote the Perron complements P(T/T11) and P(T/T22) by P1 and P2, respectively
(note that these matrices are of the same orders as T11 and T22, respectively).

Recall from Meyer [10] that if ξ1 is the stationary probability vector for P1, then

γ1π1 = ξ1, (15)

where 1/γ1 = eT π1. Analogously for ξ2.
For the sake of simplicity in describing the method, assume that the transition matrix T is

partitioned as in (13) and assume that the mean first passage matrix M is partitioned conformably
as

M =

 M11 M12

M21 M22

 . (16)

The following Theorem is based on Theorems 2.2 and 2.3 from [3].

Theorem 1 Let T ∈ Rn×n be a non-negative stochastic and irreducible matrix and let M be
its corresponding mean first passage matrix. Partition T as in (13). Then

M11 = γ1(MP1) + V1, M22 = γ2(MP2) + V2,

where γ1 and γ2 are determined via (15) and where V1 and V2 are the skew symmetric matrices
(of rank at most 2) given by

V1 = (I− P1)
#T12(I−T22)

−1E− ((I− P1)
#T12(I−T22)

−1E)T, (17)

V2 = (I− P2)
#T21(I−T11)

−1E− ((I− P2)
#T21(I−T11)

−1E)T. (18)

Further
M21 = (I−T22)

−1 T12 [M22 − (M22)d] + (I−T22)
−1 E (19)

and
M12 = (I−T11)

−1T21[M11 − (M11)d] + (I−T11)
−1 E. (20)

The proof can be found in [3].

The algorithm consists in two steps:

Step (i): Compute the diagonal blocks of M. Taking the diagonal block M11 as a represen-
tative, we see (from Theorem 1) that in order to find M11, we must have γ1, V1 and MP1 . We
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first need P1, from which we can find both ξ1 and (I−P1)
#. Having found (I−P1)

#, we then
use it and ξ1 to compute both V1 (from (17)) and MP1 (from (8)).

An analogous set of computations can be performed independently in order to obtain γ2, V2
and MP2 . With ξ1 and ξ2 in hand, we use the fact that 1/γ1 and 1/γ2 form, respectively, the
entries of the normalized left Perron vector of the 2× 2 coupling matrix

C =

 ξT1 T11 e ξT1 T12 e

ξT2 T21 e ξT2 T22 e

 . (21)

Note that C = [A(π)]T, when the aggregation mapping is

g :

{
{1, . . . , n1} −→ 1,
{n1 + 1, . . . , n} −→ 2,

where n1 denotes the size of M11.
Having thus found γ1 and γ2, we then compute M11 and M22, according to Theorem 1.

Step (ii): Compute the off-diagonal blocks of M. From Theorem 1, this can be accomplished
once we have found both M11 and M22, see (19), (20).

3.2 Computing M by Columns
Now, we suggest a different approach; to compute each column of M separately and then to
apply the Sherman-Morrison-Woodbury formula. It is another variant of computing M, based
on the formula (32), also (23) and (24), which is proved in [8] and which consists in computation
by columns. An effective implementation is described in [8].

Even in the worst case, this algorithm requires just n3 operations and further improvements
can be achieved if a sparse structure is available. Moreover, this approach gives an advantage if
some elements of M only are needed, then a column or some columns can only be computed.

Denote by Mi the i−th column of the matrix M. Rewriting (7) for the i−th column, we
obtain

Mi = e + T Mi − (T Md)i, (22)

where (T Md)i ∈ Rn is the i−th column of the matrix T Md. We can write (22) as

Mi = e + T Mi −mii T ei.

Put T∗i = T ei e
T
i . Then T∗i is the matrix of the same size as T, but it has only one (the i−th)

nonzero column and then
Mi = e + T Mi −T∗i Mi.

Thus, we can write
(I−T + T∗i)Mi = e (23)

and if we denote Ai = I−T + T∗i, we get

Ai Mi = e. (24)
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3.3 Aggregated Computation of a Block of M
Definition 6 If the graph of a transition matrix T is dichotomized by omitting a vertex into two
connected subgraphs, then such a vertex is called a cut point.

The vertex f in Fig.1 is an example of a cut point. If a matrix T contains a cut point in the sense
of Definition 6, then the individual blocks of the matrix M can be computed by aggregations.

In Fig.1, let us consider the vertices a, b, . . . , j enumerated subsequently by numbers 1, 2, . . . , 10.
Then the aggregation (10) assures that the parts of the matrices M[A(π)]T in (31) and M22

from (9) corresponding to vertices f , g, h, i, j (nonaggregated parts) are equal.
This fact can be generalized into the following Theorem, the proof of which comes from the

text.

Theorem 2 Let T contain a cut point. Consider the aggregation g such that the vertices of one
subgraph are joined with the cut point and the vertices of the other subgraph are not aggregated.
Then the part of the matrix M corresponding to the nonaggregated indices coincides with the
appropriate part of the original matrix M.

Furthermore, we formulate and prove a more general situation in which a cut point is a
particular case.

Suppose that matrix T ∈ <n×n is partitioned as in (13), where T11 ∈ <n1×n1 , T12 ∈ <n1×n2 ,
T21 ∈ <n2×n1 , T22 ∈ <n2×n2 and where n = n1 + n2. Further T = 0 and T e = e, where
e = (1, . . . , 1)T and T is a stochastic matrix (see Definition 1).

We suppose that the corresponding stationary probability vector π (see Definition 3) is blocked
conformably, i. e.

π =

(
π1
π2

)
.

It is easy to see (from Definition 1 and Definition 3) the following important properties and
relations:

Lemma 2 It is true that(
πT
1 πT

2

)
=

(
πT
1 πT

2

)( T11 T12

T21 T22

)
πT
1 = πT

1 T11 + πT
2 T21 (25)

πT
2 = πT

1 T12 + πT
2 T22

e1 = T11 e1 + T12 e2

e2 = T21 e1 + T22 e2

Definition 7 Matrix T, partitioned as in (13), has the so called BM property, if the rank of block
T21 is equal to 1, i. e.

T21 = u2v
T
1 .

For the purposes of calculating block M22, we use matrices R and S in the following forms

R =

 eT 0

0 I

 , (26)
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S =

 s 0

0 I

 , (27)

where s ∈ <n1 , si = πi/ (Rπ)1 for i = 1, . . . , n1, which corresponds to the aggregation descri-
bed in (10), see e. g. (11), (12).

Denote the corresponding aggregated matrix as

Ta = STT RT, (28)

which is in more details

Ta =

(
πT
1 T11 e

πT
1 e

πT
1 T12 e

πT
1 e

T21 e T22

)
.

Notice that Ta is transposed to A(x) (see p. 40) and Ta is a stochastic irreducible matrix (see
e. g. [7]).

It is easy to see that the left eigenvector corresponding to eigenvalue 1 of the aggregated
matrix Ta is

πa =

(
eTπ1
π2

)
(and this vector is the SPV of the matrix Ta).

Similarly as the Perron complement of T11 in (14) we have the Perron complement of T22

in the form
P2 = T22 + T21 (I−T22)

−1 T12. (29)

Lemma 3 Let T have the BM property then the Perron complements P2 and Pa2 coincide.

Proof: We know that

P2 = T22 + T21 (I−T11)
−1 T12 = T22 + u2v

T
1 (I−T11)

−1 T12.

Put
xT = vT

1 (I−T11)
−1T12.

Then
P2 = T22 + u2x

T.

Similarly

Pa2 = T22 + T21e
1(

1− πT
1 T11e

πT
1 e

) πT
1 T12

πT
1 e

= T22 + u2v
T
1 e

1(
1− πT

1 T11e

πT
1 e

) πT
1 T12

πT
1 e

.

Let us denote

yT = vT1 e
1(

1− πT
1 T11e

πT
1 e

) πT
1 T12

πT
1 e

and then we have
Pa2 = T22 + u2y

T.
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It follows from the theory of the Perron complements that the complements are stochastic mat-
rices and the corresponding eigenvector is up to a normative constant the vector π2. Thus

πT
2 = πT

2 P2 = πT
2 Pa2

and

πT
2 T22 + πT

2 u2x
T = πT

2 T22 + πT
2 u2y

T

πT
2 u2x

T = πT
2 u2y

T

0 = πT
2 u2x

T − πT
2 u2y

T

0 = πT
2 u2

(
xT − yT

)
and since πT

2 u2 > 0 it is x = y. Then also P2 = Pa2 .
The principal result is formulated in the following theorem:

Theorem 3 Let T have the BM property (see Definition 7) then the blocks M22 and Ma22 co-
incide.

Proof: Recall that (see Theorem 1)

M22 = γ2MP2 + V2

V2 = W2 −WT
2

W2 = (I− P2)
# T21 (I−T11)

−1 e eT

W2 = (I− P2)
# u2v

T
1 (I−T11)

−1 e eT

and then similarly

Ma22 = γa2MPa2 + Va2

Va2 = Wa2 −WT
a2

Wa2 = (I− Pa2)# Ta21 (I−Ta11)
−1 e eT

Wa2 = (I− Pa2)# u2v
T
1 e

(
1− πT

1 T11e

πT
1 e

)−1
eT.

We know that P2 = Pa2 (from Lemma 3) and γ2 = γa2 and then it is also MP2 = MPa2 . We
denote that r = (I− Pa2)# u2, α = vT

1 (I−T11)
−1 e and αa = vT

1 e
(
1− πT

1 T11e

πT
1 e

)−1
and we

get
W2 = rαeT, Wa2 = rαae

T.

Now we verify that α = αa. Firstly we evaluate αa

αa = vT
1 e

(
1− πT

1 T11e

πT
1 e

)−1
= vT

1 e

(
πT
1 e− πT

1 T11e

πT
1 e

)−1
=

vT
1 e πT

1 e

πT
1 (I−T11) e

.

From Lemma 2 we get
πT
2 T21 = πT

1 (I−T11) (30)

and then

αa =
vT
1 e πT

1 e

πT
2 T21e

=
vT
1 e πT

1 e

πT
2 u2vT

1 e
=

πT
1 e

πT
2 u2

.
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Now we evaluate α

α = vT
1 (I−T11)

−1 e .

From the relation (30) we have

πT
2 u2v

T
1 = πT

1 (I−T11)

vT
1 =

1

πT
2 u2

πT
1 (I−T11)

and substitute it to the formula for α. We get

α =
1

πT
2 u2

πT
1 (I−T11) (I−T11)

−1 e =
πT
1 e

πT
2 u2

= αa.

Thus M22 = Ma22.

Remark 1 If T21 = u2v
T
1 , T12 = u1v

T
2 , where u1 = (0, . . . , 0, 1)T, u2 = (1, 0, . . . , 0)T,

v1 = (0, . . . , 0, tn1+1,n1)
T, v2 = (tn1,n1+1, 0, . . . , 0)

T then the BM property transformes into the
cut point situation.

The mean first passage matrix to the aggregated matrix to SPV π is

M[A(π)]T =


8.8873 3.5500 5.0555 18.0777 17.0777 16.0777
28.000 3.1550 1.5055 14.5277 13.5277 12.5277
30.000 2.0000 2.8044 13.0222 12.0222 11.0222
31.000 3.0000 1.0000 14.0222 13.0222 12.0222
32.000 4.0000 2.0000 1.0000 14.0222 13.0222
33.000 5.0000 3.0000 2.0000 1.0000 14.0222

 (31)

3.4 Aggregations for Column Computation
For arbitrary k−th column: we solve the equation

[I− (T−Tk)]Mk = e, (32)

where Tk, Mk are the k−th columns of the corresponding matrices.
We apply the iteration process:

M
(0)
k = e,

M
(i+1)
k = (T−T∗k)M

(i)
k + e. (33)

Since ρ(T−T∗k) < 1, then the iteration process converges, but the convergence is slow. There
is possible to apply the following aggregation process to speed up the computation.
Algorithm: C̃ = [R (I− (T−T∗k))

T S(π)]T=[R AT
i S(π)]T (see (23), (24))

For i = 1, . . . , consider the residuals: ri = e− [(I− (T−T∗k))]M
(i)
k ,

C̃ oi = [S(π)]T ri

M
(i+ 1

2
)

k = M
(i)
k + RT oi

M̃(0) = M(i+ 1
2
)

M̃(j+1) = (T−T∗k) M̃
(j)
k + e, j = 1, . . . , s

M(i+1) = M̃(s).
The convergence of the algorithm is assured. We can state
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Theorem 4 There exists such s, that the algorithm converges.

The proof is clear from the text.

4 Cost Analysis
In this paper an overview of methods for computing the mean first passage times matrix is given.
The method introduced by C. D. Meyer (see [9]) requires approximately 4/3n3 operations and
the inversion of a large full matrix. Another access (shown in [3]) needs approximately 7/6n3

operations and requires two matrix inversions of matrices of size n/2. The access presented by
P. Mayer requires not more than n3 operations and requires the inversion of a matrix (but in case
when the transition matrix is a sparse then the inverted matrix is a sparse as well and the number
of operations needed can be further reduced).

A common drawback of all approaches is the necessity to compute entire matrix what is not
effective in particular when we are interested in a few of its elements and all the elements of the
matrix are useless. The processes presented in this paper eliminate this deficiency.

5 Conclusion
The possibilities of computation of a part of MFPTM using aggregation procedures are intro-
duced in this paper. This approach eliminates the need of inversion in particular of the block
I−T11 which significantly reduces severity of computational processes. The stationary proba-
bility vector (SPV) is necessary to know but this vector can be effectively obtained using the
IAD algorithm presented here.
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Abstract: Direct Lyapunov’s method is applied to solve optimization problems for linear differential
equations with delay. Optimal control functions minimizing quality criteria are found.

Keywords: Lyapunov function, differential system with delay, optimal control function, quality cri-
terion.

Introduction
As it is well-known, there are two approaches to solving optimization problems in dynamic sys-
tems. The first approach was proposed by L.S. Pontryagin. His method is based on finding a fixed
control (a program control) for which the solution of the system described by differential equations
reaches a predetermined previous value and minimizes the integral quality criterion. The second ap-
proach consists in finding a control function in the form of a feedback such that the trivial solution
is asymptotically stable and simultaneously minimize the integral quality criterion. Being based on
the second Lyapunov method, this is a kind of a dynamic programming method (a combination of
methods in calculus of variations and Lyapunov functions method). Its founder is N.N. Krasovskii.
We refer, e.g., to [1, 3, 4, 5]. In this paper, the latter method is applied to linear differential systems
with delay.

1 Problem considered
Consider a control system described by a system of differential equations with delay

dx(t)

dt
= f (x(t), x(t− τ), u(t, x)) , (1)

where f : Rn ×Rn ×Rm → Rn, f = (f1, . . . , fn), f (0, 0, 0) = 0, (x, v, u) ∈ D,

D := {(x, v, u) ∈ Rn ×Rn ×Rm, t ≥ t0},

t0 ∈ R, τ > 0, n ≥ 1, m ≥ 1 are natural numbers, and the undisturbed system

dx(t)

dt
= f (x(t), x(t− τ), 0) . (2)

We need to find a control function in the form of a feedback, i.e., u = u(t, x), such that a solution
x(t), t ≥ t0 of system (1) corresponding to this control and to the initial function is asymptotically
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stable and the integral (often called quality criterion)

I =

∫ ∞
t0

ω (x(t), x(t− τ), u(t, x)) dt (3)

attains a minimum value. The function ω(x, y, u) defined on D is assumed to be positive definite.
Let Cn

τ = C([−τ, 0),Rn) be the space of the continuous mappings from the interval [−τ, 0)
into Rn. If A is any set in Rn, we will set Cn

τ (A) = C([−τ, 0), A).
Let Cn

τ (D) be the space of the continuous mappings from the interval [−τ, 0) into the set D =
{ξ ∈ Rn : ‖ξ‖ < M}, M is a positive constant (or M =∞).

Let x : [t0 − τ,∞)→ Rn be a continuous vector-function, t0 ∈ R, and let τ > 0 be a number.
For a given t ∈ [t0,∞), we define a norm

‖x(t)‖τ = max
θ∈[−τ,0]

(‖x(t+ θ)‖)

where
‖x(s)‖ = max

i=1,...,n
{|xi(s)|}, s ∈ [t0 − τ,∞).

The following three definitions and Theorem 1 are taken from [2]

Definition 1 Let a functional V : (α,∞) × Cn
τ (D) → R be given. It is called positive-definite

if there exists a continuous nondecreasing function w : [0,M) → R, w(0) = 0, w(s) > 0 if
s ∈ [0,M) such that

V (t, ψ) ≥ w(‖ψ(0)‖)

on (α,∞)× Cn
τ (D).

Definition 2 Let a functional V : (α,∞)×Cn
τ (D)→ R be given. V is said to have an infinitesimal

upper bound if there exists a continuous nondecreasing function W : [0,M) → R, W (0) = 0,
W (s) > 0 if s ∈ [0,M) such that

V (t, ψ) ≤ W (‖ψ‖τ )

on (α,∞)× Cn
τ (D).

Definition 3 A positive-definite functional V : (α,∞)×Cn
τ (D)→ R having an infinitesimal upper

bound is called a Lyapunov-Krasovskii functional.

Theorem 1 If there exists a Lyapunov-Krasovskii functional

V : (α,∞)× Cn
τ (D)→ R

and if V (t, xt) defines a nonincreasing function of t on [t0, β) whenever

x = x(·, t0, ϕ), t ∈ [t0 − τ, β)

is the noncontinuable solution of (2) through some (t0, ϕ) ∈ (α,∞) × Cn
τ (D), then the trivial

solution of (2) is asymptotically stable.
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Define an auxiliary function

B (V, t, x(t), xt, u) :=
dV (t, xt)

dt
+ ω(x(t), x(t− τ), u) (4)

where V is a Lyapunov-Krasovskii functional and dV (t, xt)/dt denotes the derivative of V with re-
spect to t along trajectories of system (1). The following theorem was motivated by a similar theorem
for non delayed systems [4].

Theorem 2 Assume that, for the system of differential equations (1), there exists a Lyapunov-Krasovskii
functional V0(t, xt) having an infinitesimal upper bound and a function u0(t, x) such that
1. The function ω(x(t), x(t − τ), u0(t, x)) is positive-definite for every t ≥ t0, ‖x‖ < M , where
M is a positive constant.
2. B(V0, t, x(t), xt, u0(t, x)) ≡ 0.
3. B(V0, t, x(t), xt, u(t, x)) ≥ 0 for any u(t, x) 6≡ u0(t, x).

Then, the function u0(t, x) is a solution of the optimal stabilization problem and∫ ∞
t0

ω(x(t), x(t− τ), u0(t, x))dt

= min
u

[∫ ∞
t0

ω(x(t), x(t− τ), u(t, x))dt
]
= V0(t0, xt0). (5)

Proof. The functional V0(t, xt) satisfies all conditions of Theorem 1. For its derivative along
trajectories of the system (1), we have

dV0
dt

= −ω(x(t), x(t− τ), u0(t, x)), (6)

which means that it is a negative-definite function. That is why, for u = u0(t, x), the undisturbed
motion x(t) ≡ 0 is asymptotically stable and limt→∞ x(t) = 0 for all initial conditions x(t0) from
the region ‖x(t0)‖τ ≤ η, where η can be found from the equation

sup[V0(t, xt)|‖x‖τ≤η] < inf[V0(t, xt)|‖x‖τ=h],

and h < M .
Now it is sufficient to show that (5) is true. The motion x0(t) satisfies condition ‖x0(t)‖τ ≤ h <

M . Thus, for all t ≥ t0, the equation (6) holds. Moreover, from the property of asymptotic stability,
we have

lim
t→∞

V0(t, x0t) = 0. (7)

Integrating equation (6) along the motion x0(t) over (t0,∞), using (7), we obtain

V0(t0, xt0) =

∫ ∞
t0

ω(x0(t), x0(t− τ), u0(t, x))dt. (8)

On the other hand, let u = u∗(t, x) be an arbitrary function that is also a solution of the optimal
stabilization problem for the motion x(t) ≡ 0 and for initial conditions ‖x(t0)‖τ ≤ η. Assume that,
for t ≥ t0 − τ , x∗(t) lies inside the region ‖x(t)‖τ ≤ h. Then, by assumption 3, we get

dV0
dt
≥ −ω(x∗(t), x∗(t− τ), u∗(t, x)). (9)
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Integrating this inequality over (t0,∞) and using the property

lim
t→∞

V0(t, x∗t) = 0 (10)

we obtain
V0(t0, xt0) ≤

∫ ∞
t0

ω(x∗(t), x∗(t− τ), u∗(t, x))dt. (11)

A similar inequality can be obtained if the motion x∗(t) goes out of the region ‖x(t)‖τ ≤ h on an
interval. In this case, we have the following situation. Let t1 > t0 be the moment of time, when the
motion x∗(t) goes back into the region and stays in it for all t ≥ t1. Then, from that moment on,
equation (9) will hold for x∗(t). Integrating this inequality over (t1,∞) and using the property (10)
again, we obtain

V0(t1, x∗t1) ≤
∫ ∞
t1

ω(x∗(t), x∗(t− τ), u∗(t, x))dt. (12)

Since x(t0) satisfies ‖x(t0)‖τ ≤ η, where η is sufficiently small, we have

V0(t0, xt0) < V0(t1, x∗(t1)), (13)

and, due to assumption 1, we get∫ ∞
t1

ω(x∗(t), x∗(t− τ), u∗(t, x))dt <
∫ ∞
t0

ω(x∗(t), x∗(t− τ), u∗(t, x))dt. (14)

From (12)–(14), we derive (11), and from (8), (11) we get (5). �

2 Linear equations
Consider linear scalar equations with constant coefficients and a single delay

dx(t)

dt
= ax(t) + bx(t− τ) + cu(x(t)), (15)

where a, b, c are real constants, τ > 0 is a delay and u(x(t)) is a control function.
Together with equation (15), we will consider a quality criterion (3) with t0 = 0 and

ω(x(t), x(t− τ), u) = αx2(t) + 2βx(t)x(t− τ) + γx2(t− τ) + δu2(x(t)),

i.e., (3) being a quadratic criterion

I =

∫ ∞
0

[
αx2(t) + 2βx(t)x(t− τ) + γx2(t− τ) + δu2(x(t))

]
dt, (16)

with α > 0, αγ − β2 > 0, δ > 0.

Theorem 3 If
βb < 0 (17)

and
b(α + γ) = 2aβ, (18)

then the optimal stabilization control function

u0(x(t)) = 2
βc

bδ
x(t) (19)

exists.
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Proof. We utilize Theorem 2. Define a Lyapunov-Krasovskii functional

V (t, xt) = hx2(t) +

∫ t

t−τ
dx2(s)ds, h > 0, d > 0. (20)

Then, in accordance with condition 2 of Theorem 2, we analyze the expression B given by (4), i.e.,

B (V, t, x(t), xt, u) = 2hx(t)[ax(t) + bx(t− τ) + cu(x(t))]+

+d[x2(t)− x2(t− τ)] + αx2(t) + 2βx(t)x(t− τ) + γx2(t− τ) + δu2(x(t)) = 0.

Simplifying the last expression, we get

B (V, t, x(t), xt, u) = (2ha+ d+ α)x2(t) + (γ − d)x2(t− τ)+

+(2hb+ 2β)x(t)x(t− τ) + 2hcx(t)u(x(t)) + δu2(x(t)) = 0.

This equation will be satisfied if
2ha+ d = −α, (21)

d = γ, (22)

hb = −β, (23)

2hcx(t)u(x(t)) = −δu2(x(t)). (24)

Condition (23) is valid because of (17). Substituting (22) and (23) into (21), we get condition (18).
From (24), we obtain an optimal control in the form

u0(x(t)) = −2
hc

δ
x(t) = 2

βc

bδ
x(t).

�

Example 1 Consider equation (15) with a = −2, b = −1, c = 1, i.e.,

ẋ(t) = −2x(t)− x(t− τ) + u(t)

with a quadratic quality criterion (16) with α = 2 > 0, β = 1, γ = 2, δ = 1 > 0, (here
αγ − β2 = 3 > 0), i.e.,

I =

∫ ∞
0

(2x2(t) + 2x(t)x(t− τ) + 2x2(t− τ) + u2(t))dt.

Since βb = −1 < 0 and b(α + γ) = 2aβ = −4, all assumptions of Theorem 3 are true. By
formula (19), the optimal stabilization control function

u0(x(t)) = 2
βc

bδ
x(t) = −2x(t)

exists.
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3 Linear systems
Consider linear systems with constant coefficients with one constant delay

dx(t)

dt
= A0x(t) + A1x(t− τ) + bu(x(t)), (25)

where A0, A1 are n × n constant matrices, b ∈ Rn, u(x(t)) ∈ R, and a quality criterion (3) with
t0 = 0 and

ω(x(t), x(t− τ), u(t, x)) := xT (t)C11x(t) + xT (t)C12x(t− τ)+

+xT (t− τ)C21x(t) + xT (t− τ)C22x(t− τ) + du2(x(t)),

whereC11,C12,C21,C22 aren×n positive-definite matrices,C11 andC22 are symmetric,C21 = CT
12

and d > 0, i.e., (3) is a quadratic criterion

I =

∫ ∞
0

[
xT (t)C11x(t) + xT (t)C12x(t− τ)+

+xT (t− τ)C21x(t) + xT (t− τ)C22x(t− τ) + du2(x(t))
]
dt. (26)

Theorem 4 Assume that there exists a positive definite symmetric matrix H satisfying Lyapunov
matrix equation

AT0H +HA0 = −C11 − C22. (27)

If, moreover,
AT1H = −C21, (28)

the optimal stabilization control function

u0(x(t)) = −
2

d
bTHx(t) (29)

exists.

Proof. We utilize Theorem 2. Define a Lyapunov-Krasovskii functional

V (t, xt) = xT (t)Hx(t) +

∫ t

t−τ
xT (s)Gx(s)ds,

whereH ,G are n×n positive-definite matrices. Then, in accordance with condition 2 of Theorem 2,
we analyze the expression B given by (4), i.e.,

B (V, t, x(t), xt, u) = [A0x(t) + A1x(t− τ) + bu(x(t))]THx(t)

+ xT (t)H[A0x(t) + A1x(t− τ) + bu(x(t))]+

+ xT (t)Gx(t)− xT (t− τ)Gx(t− τ)
+ xT (t)C11x(t) + xT (t)C12x(t− τ) + xT (t− τ)C21x(t)

+ xT (t− τ)C22x(t− τ) + du2(x(t)) ≡ 0.
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Simplifying the last expression, we get

B (V, t, x(t), xt, u) = xT (t)[AT0H +HA0 +G+ C11]x(t)+

+ xT (t− τ)[AT1H + C21]x(t) + xT (t)[HA1 + C12]x(t− τ)+
+ xT (t− τ)[C22 −G]x(t− τ)+

+ bTu(x(t))Hx(t) + xT (t)Hbu(x(t)) + du2(x(t)) ≡ 0.

This will hold if
AT0H +HA0 = −C11 −G, (30)

AT1H = −C21, (31)

HA1 = −C12, (32)

G = C22, (33)

u(x(t))[bTHx(t) + xT (t)Hb] = −du2(x(t)). (34)

Equation (30) is valid due to (33) and (27). Equations (31) and (32) hold due to (28).
From (34), we obtain an optimal control in the form

u0(x(t)) = −
2

d
bTHx(t).

�

Example 2 Consider system (25) with n = 2 and

A0 =

(
−1 0
0 −1

)
, A1 =

(
−1/2 ε
0 −1/2

)
, b =

(
b1
b2

)
,

where ε is an arbitrary constant, i.e.,

ẋ1(t) =− x1(t)−
1

2
x1(t− τ) + εx2(t− τ) + b1u(t),

ẋ2(t) =− x2(t)−
1

2
x2(t− τ) + b2u(t)

with a quadratic quality criterion (26) with

C11 =

(
1 δ
δ 1

)
, C12 =

(
c11 c12
c21 c22

)
, C21 =

(
c11 c21
c12 c22

)
, C22 =

(
1 0
0 1

)
,

i.e.,

I =

∫ ∞
0

[
(x1(t), x2(t))

(
1 δ
δ 1

)(
x1(t)
x2(t)

)
+ (x1(t), x2(t))

(
c11 c12
c21 c22

)(
x1(t− τ)
x2(t− τ)

)
+ (x1(t− τ), x2(t− τ))

(
c11 c21
c12 c22

)(
x1(t)
x2(t)

)
+(x1(t− τ), x2(t− τ))

(
1 0
0 1

)(
x1(t− τ)
x2(t− τ)

)
+ du2(t)

]
dt.
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We assume that δ is a constant such that
|δ| < 1 (35)

We show that all assumptions of Theorem 4 are true. From equation (27), we get(
−1 0
0 −1

)(
h11 h12
h21 h22

)
+

(
h11 h12
h21 h22

)(
−1 0
0 −1

)
= −

(
1 δ
δ 1

)
−
(
1 0
0 1

)
.

Simplifying, we obtain

H =

(
h11 h12
h21 h22

)
=

(
1 δ/2
δ/2 1

)
.

Matrix H is a positive definite symmetric matrix if |δ| < 2. This inequality is valid due to (35). The
matrix C11 is positive definite, too. Consider equation (28). In our case, we get(

−1/2 0
ε −1/2

)(
1 δ/2
δ/2 1

)
= −

(
c11 c21
c12 c22

)
and

C21 =

(
1/2 δ/4

δ/4− ε 1/2− εδ/2

)
.

Since C12 = CT
21, we get

C12 =

(
1/2 δ/4− ε
δ/4 1/2− εδ/2

)
.

Obviously, C12, C21 are positive definite matrices for an arbitrary ε. The matrix C22 is positive
definite as well. So, all assumptions are fulfilled and Theorem 4 is applicable. By formula (29), the
optimal stabilization control function

u0(x(t)) = −
2

d
bTHx(t) = −2

d
(b1, b2)

(
1 δ/2
δ/2 1

)
x(t)

exists.

4 Conclusion
The paper applies a method developed by N.N. Krasovskii to solving optimal stabilization problems
for differential equations and systems with delay. This method makes it possible to find a control
function in the form of a feedback such that the zero solution of a given equation or system is asympto-
tically stable and, simultaneously, an integral quality criterion attains a minimum value.
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Abstract: We study controllability and stability properties of dynamical systems when actuator
or sensor signals are under attack. We formulate a detailed adversary model that considers
different levels of privilege for the attacker such as read and write access to information flows.
We then study the impact of these attacks and propose reactive countermeasures based on game
theory.

The primary line of defense for any system is its proactive security mechanisms. Therefore,
in practice we must use the threat model to identify the most valuable targets for an adversary
and invest in protecting them.

We consider open-loop solutions. To find the necessary conditions for optimality of the sit-
uation we need to use Pontryagins minimum principle.

Keywords: stability,optimality, security of dynamical systems, actuator or sensor signals, attack,
information war.

1 Introduction
We study controllability and stability properties of dynamical systems when actuator or sensor
signals are under attack. We formulate a detailed adversary model that considers different levels
of privilege for the attacker such as read and write acceass to information flows. We then study
the impact of these attacks and propose reactive countermeasures based on game theory.

The security of cyber-physical control systems has received significant attention in the last
couple of years [1,2]. The primary line of defense for any system are its proactive security
mechanisms. Therefore, in practice we must use the threat model to identify the most valuable
targest for an adversary and invest in protecting them.

If an attack is detected, the defender can respond with different actions. Some of the possible
responses include reconfiguration of the system, attack isolation, of even a system shutdown (for
safety reasons). In this work we are interested in defenses that respond to attacks by changes
in their control actions; thus creating a game-theory problem where the actions on the players
are the control signals each of them has assess to. In particular, we assume that if the system
is not under attack, the system will operate with a vanilla control signal u(t) ; however, when
the system detects an attack, in chages to a reactive control signal us(t) to maintain the system
under the best possible conditions. This creates a differential game between the defender and
the attacker. We use a recept model for data integrity attacks in demand-response programs for
the smart grid [3]. The model considers actuator attacks as an aggregate effect for multi-agent
systems that all receive the same input control signal.
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2 Statement of problem
May be the most general framework in control system is the theory of Linear Time Invariant
state space system [4]. In this setting we consider a system of linear differential equations

˙x(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

where x(t) ∈ Rn is a vector of phisical quantities representing the state of the system at time
t, u(t) ∈ Rp is the control input at time t, y(t) ∈ Rn is a vector of sensor measuarements at time
t, and A,B, C, D - matrics representing the dynamics of the system.

2.1 Control and security properties
Similar to security properties such as confidentiality, integrity, and availiability, there are several
control properties that asystem designer or plant operators would like to maintain,even under
attack. In the theory of linear state space systems, two dual properties are controllability and
observability.

Controllability is an important property of a control system, and the controllability property
plays a crucial role in many control problems, such as stabilization of unstable systems by feed-
back, or optimal control. Controllability means that the state of the system can be driven to any
arbitrary place by using the manipulated variables.

2.2 Attacking Controlability
We define an attack model for control systems containig three part: goal of the attacker,offline
information,and online information. While in general setting an attacker can have many different
objectives, in this paper we focus on attackers that try to manipulate the controllability or stability
of the system. Using the attacker model , we turn to problem of how controllability and stability
can be attacked. This anaysis can be used for risk assessment by identifying the resiliency of the
system to attacks or to identify the actuators and sensors that are most valuable to the system.

Let us consider one of the interesting and general case system (1) (Attacking Controlability
with u(t)): the linear control system

dX(t)

dt
= A(t, ξ(t))X(t) +B(t, ξ(t))U(t) (3)

on the probability basis
(
Ω,T,P,F ≡ {Ft : t ≥ 0}

)
and together with (3) we consider the

initial conditions
X(0) = ϕ(ω), ϕ : Ω→ Rn.

The coefficients of the system are semi-Markov coefficients defined by the transition intensities
qαk(t), α, k = 1, 2, · · · , n, from state θk to state θα. We suppose that the vectors U(t) belong to
the set of control U and the functions qαk(t), α, k = 1, 2, · · · , n, satisfy the conditions [8]:

qαk(t) ≥ 0,

∫ ∞
0

qk(t) dt = 1, qk(t) ≡
∞∑
α=1

qαk(t).
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Ifψk(t) denotes the probability of the event that no jump takes place during the interval (tj, tj+1),
provided that the process jumps to the state θk at time tj , then

ψk(t) =

∫ ∞
t

qk(τ)dτ, k = 1, 2, · · · , n. (4)

In our considerations, it will be convenient to denote the block-diagonal matrix,

Ψ(t) = diag
(
ψ1(t), ψ2(t), · · · , ψn(t)

)
. (5)

Definition 1. Let the matrices Q(t, ξ(t)), L(t, ξ(t)) with semi-Markov elements be symmetric
and positive definite. The cost functional

J =

∫ ∞
0

〈
X∗(t)Q(t, ξ(t))X(t) + U∗(t)L(t, ξ(t))U(t)

〉
dt, (6)

defined on the space C1 × U , where 〈·〉 denotes mathematical expectation, is called the quality
criterion.

Definition 2. Let S(t, ξ(t)) be a matrix with semi-Markov elements. The control vector

U(t) = S(t, ξ(t))X(t) (7)

which minimizes the quality criterion J(X,U) with respect to the system (3) is called the optimal
control.

If we denote

G(t, ξ(t)) ≡ A(t, ξ(t)) +B(t, ξ(t))S(t, ξ(t)),

H(t, ζ(t)) ≡ Q(t, ζ(t)) + S∗(t, ζ(t))L(t, ζ(t))S(t, ζ(t)),

then the system (3) can be rewritten to the form

dX(t)

dt
= G(t, ξ(t))X(t) (8)

and the functional (6) to the form

J =

∫ ∞
0

〈
X∗(t)H(t, ξ(t))X(t)

〉
dt. (9)

We suppose also, that together with every jump of random process ξ(t) in time tj , the solu-
tions of the system (8) submit to the random transformation

X(tj + 0) = CskX(tj − 0), s, k = 1, 2, · · ·n,

if the conditions ξ(tj + 0) = θs, ξ(tj − 0) = θk hold.

Definition 3. Let ak(t), k = 1, · · · , n, t ≥ 0 be a selection of n different positive functions.
If ξ(tj + 0) = θs, ξ(tj − 0) = θk, s, k = 1, · · ·n, and for tj ≤ t ≤ tj+1 the equality
a(t, ξ(t) = θs) = as(t− tj) holds, then the function a(t, ξ(t)) is called semi-Markov function.

The application of semi-Markov functions makes it possible to use the concept of stochastic
operator. In fact, the semi-Markov function a(t, ξ(t)) is an operator of the semi-Markov process
ξ(t), because the value of the semi-Markov function a(t, ξ(t)) is defined not only by the values
t and ξ(t), but it is also necessary to specify the function as(t), t ≥ 0 and the value of the jump
of the process ξ(t) in time tj which precedes the moment of time t.
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2.3 Stability properties
Another impornant property of control system is a stability. Several different stability definitions
are useful. Here, we recall the mean stability and the mean square stability definitions, the
L2 stability given in [5], and the classical definition of asymptotic stability.

Definition 4. The trivial solution of system (3) is said to be mean square stable on the interval
[0,∞) if for each ε > 0 there exists δ > 0 such that any solution X(t) corresponding to the
initial data X(0) exists for all t ≥ 0 and the mathematical expectation

E(1){‖X(t)‖2} < ε whenever t ≥ 0 and ‖X(0)‖ < δ.

The mean stability of the zero solution of system (3) is defined in much the same way with
only ‖X(t)‖2 being replaced by ‖X(t)‖.

Several different stability definitions are useful. Here, we recall the mean stability and the
mean square stability definitions, the L2 stability given in [5,7], and the classical definition of
asymptotic stability.

Definition 5. The trivial solution of system (3) is said to be mean square stable on the interval
[0,∞) if for each ε > 0 there exists δ > 0 such that any solution X(t) corresponding to the
initial data X(0) exists for all t ≥ 0 and the mathematical expectation

E(1){‖X(t)‖2} < ε whenever t ≥ 0 and ‖X(0)‖ < δ.

The mean stability of the zero solution of system (3) is defined in much the same way with
only ‖X(t)‖2 being replaced by ‖X(t)‖.

Definition 6. The trivial solution of the differential systems (3) is said to be L2 stable if the
integral ∫ ∞

0

E(1){‖X(t)‖2}dt (10)

converges.

3 Main results
The optimal control U(t) for the system (3) has some special properties and the equations de-
termining it are different from those given in the previous section in case the coefficients of the
control system (3) have special properties or intensities qsk(t) satisfy some relations or some
other special conditions are satisfied [10,11,12]. Some of these cases will be formulated as
corollaries.

Theorem 1. Let the control system (3) with piecewise constant coefficients have the form

dX(t)

dt
= A(ξ(t))X(t) +B(ξ(t))U(t). (11)

Then the quadratics functional

V =

∫ ∞
0

〈
X∗(t)Q(ξ(t))X(t) + U∗(t)L(ξ(t))U(t)

〉
dt (12)
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determines the optimal control in the form

U(t) = S(t, ξ(t))X(t),

where
S(t, ξ(t)) = Sk(t− tj)

and the matrices Sk(t) satisfy the equations

Sk(t) = −L−1B∗kRk(t), k = 1, 2, · · · , n (13)

if tj ≤ t < tj+1, ξ(t) = θk.
The matrices Rk(t), k = 1, 2, · · · , n are the solutions of the systems of the Riccati type equa-
tions:

dRk(t)

dt
= −Qk − A∗kRk(t)−Rk(t)Ak

+Rk(t)BkL
−1
k B∗kRk(t)−

Ψ′k(t)

Ψk(t)
Rk(t)

−
n∑
s=1

qsk(t)

Ψk(t)
C∗skRs(0)Csk, k = 1, · · · , n. (14)

Remark 1. In the corollary we mention piecewise constant coefficients of the control system
(11). The coefficients of the functional (12) will be piecewise as well, but the optimal control is
unstationary.

Corollary 1. Let us assume that

Ψ′k(t)

Ψk(t)
= const,

qsk(t)

Ψk(t)
= const, k, s = 1, 2, · · · , n. (15)

Then the optimal control U(t) will be piecewise constant.

Taking into consideration that the optimal control is piecewise constant, we find out that the
matrices Rk(t), k = 1, 2, · · · , n in (13) are constant, which implies the form of the system (14)
is changed to the form

Qk + A∗kRk +RkAk −RkBkL
−1
k B∗kRk +

Ψ′k(t)

Ψk(t)
Rk(t)

(16)

+
n∑
s=1

qsk(t)

Ψk(t)
C∗skRkCsk = 0, k = 1, · · · , n.

The system (16) has constant solutions Rk, k = 1, 2, · · · , n, if conditions (15) hold. Moreover,
if the random process ξ(t) is a Markov process then the conditions (15) have the form

Ψ′k(t)

Ψk(t)
= akk = const,

qsk(t)

Ψk(t)
= ask = const, k, s = 1, 2, · · · , n, k 6= s,
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and the system (16) transforms to the form

Qk + A∗kRk +RkAk −RkBkL
−1
k B∗kRk +

n∑
s=1

askC
∗
skRsCsk = 0, k = 1, · · · , n

for which the optimal control is

U(t) = S(ξ(t))X(t), S(θk) ≡ Sk, Sk = −L−1k B∗kRk, k = 1, 2, · · · , n.

Corollary 2. Let the state θs of the semi-Markov process ξ(t) is not be longer than Ts > 0. Then
the system (12) has the form

νk(x) ≡ x∗Ckx

=

∫ Ts

0

(
X∗k(t)

(
Ψk(t)Qk(t) +

n∑
s=1

qsk(t)C
∗
skCsCsk

)
Xk(t)

+ U∗k (t)Ψk(t)Lk(t)Uk(t)

)
dt, k = 1, 2, · · · , n.

(17)

Because
Ks(Ts) = Ψs(t)Rs(t), s = 1, 2, · · · , n,

then
Ks(Ts) = 0, s = 1, 2, · · · , n. (18)

In this case, the search for the matrix Ks(t), s = 1, 2, · · · , n in concrete tasks is reduced to
integration of the matrix system of differential equations (6) on the interval [0, Ts] with initial
conditions (18). In view of Ψs(Ts) = 0, s = 1, 2, · · · , n, we can expect, that every equation
(11) has a singular point t = Ts. If Ψs(t) has simple zero at the point t = Ts, then the system
(12) meets the necessary condition

Ψs(Ts)Rs(Ts) +
n∑
k=1

qsk(Ts)C
∗
ksRs(0)Cks = 0, s = 1, · · · , n

for boundary of matrix Rs(t) in the singular points.

4 Model problem
Let the semi-Markov process ξ(t) take two states θ1, θ2 and let it be identical with the Markov
process described by the system of differential equations

dp1(t)

dt
= −λp1(t) + λp2(t),

dp2(t)

dt
= λp1(t)− λp2(t).

We will consider the L2-stability of the solutions of the differential equation

dx(t)

dt
= a
(
ξ(t)

)
x(t), a(θk) ≡ ak (19)
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constructing a system of the type (14) related to the equation (19). The system is

c1 = 1 +

∫ ∞
0

e2a2tλe−λtc2 dt, c2 = 1 +

∫ ∞
0

e2a1tλe−λtc1 dt

and its solution is

c1 =
(λ− a1) (λ− 2a2)

2a1a2 − λ(a1 + a2)
, c2 =

(λ− a2) (λ− 2a1)

2a1a2 − λ(a1 + a2)
·

The trivial solution of the equation (19) is L2-stable, if c1 > 0 and c2 > 0. Let the intensities of
semi- Markov process ξ(t) satisfy the conditions

q11(t) ≈ 0, q22(t) ≈ 0, q21(t)− λe−λt ≈ 0, q12(t)− λe−λt ≈ 0

Then, using the Theorem 1, the conditions

1− c1
∫ ∞
0

q11(t)e
2a1tdt− c2

∫ ∞
0

(
q21(t)− λe−λt

)
e2a2tdt > 0,

1− c1
∫ ∞
0

(
q12(t)− λe−λt

)
e2a1tdt− c2

∫ ∞
0

q22(t)e
2a2tdt > 0.

are sufficient conditions for the L2-stability of solutions of the equation (19).
Threat modeling is a procedure for optimizing network security by identifying objectives

and vulnerabilities, and then defining countermeasures to prevent, or mitigate the effects of,
threats to the system. In this context, a threat is a potential or actual adverse event that may be
malicious (such as a denial-of-service attack) or incidental, and that can compromise the assets
of an enterprise.

Security threat modeling, or threat modeling, is a process of assessing and documenting a
system’s security risks. Security threat modeling enables our to understand a system’s threat
profile by examining it through the eyes of our potential foes. With techniques such as entry
point identification, privilege boundaries and threat trees, you can identify strategies to mitigate
potential threats to your system. Our security threat modeling efforts also enable your team to
justify security features within a system, or security practices for using the system, to protect our
corporate assets.

There are some aspects to security threat modeling( with example in economics situation):
1. Identify threats. For example, our system’s ordering module interacts with the payment

processing module. Anybody can place an order, but only manager-level employees can credit a
customer’s account when he or she returns a product. At the boundary between the two modules,
someone could use functionality within the order module to obtain an illicit credit.

2. Understand the threat(s). To understand the potential threats at an entry point, you
must identify any security-critical activities that occur and imagine what an adversary might do
to attack or misuse our system.
On questions such as ”How could the adversary use an asset to modify control of the system,
retrieve restricted information, manipulate information within the system, cause the system to
fail or be unusable, or gain additional rights.
In this way, we can determine the chances of the adversary accessing the asset without being
audited, skipping any access control checks, or appearing to be another user. To understand
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the threat posed by the interface between the order and payment processing modules, we would
identify and then work through potential security scenarios.
For example, an adversary who makes a purchase using a stolen credit card and then tries to get
either a cash refund or a refund to another card when he returns the purchase.

3. Categorize the threats. To categorize security threats, consider the STRIDE (Spoofing,
Tampering, Repudiation, Information disclosure, Denial of Service, and Elevation of privilege)
approach. Classifying a threat is the first step toward effective mitigation.
For example, if we know that there is a risk that someone could order products from our com-
pany but then repudiate receiving the shipment, we should ensure that you accurately identify
the purchaser and then log all critical events during the delivery process.

4. Identify mitigation strategies. To determine how to mitigate a threat, we can create a
diagram called a threat tree. At the root of the tree is the threat itself, and its children (or leaves)
are the conditions that must be true for the adversary to realize that threat. Conditions may in
turn have subconditions.
For example, under the condition that an adversary makes an illicit payment. The fact that the
person uses a stolen credit card or a stolen debit/check card is a subcondition. For each of the
leaf conditions, we must identify potential mitigation strategies; in this case, to verify the credit
card using the some verification package and the debit card with the issuing financial institution
itself. Every path through the threat tree that does not end in a mitigation strategy is a system
vulnerability.

5. Test. Our threat model becomes a plan for penetration testing. Penetration testing inves-
tigates threats by directly attacking a system, in an informed or uninformed manner.
Informed penetration tests are effectively white-box tests that reflect knowledge of the system’s
internal desig, whereas uninformed tests are black box in nature.
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[12] DZHALLADOVA, I.; BAŠTINEC, J.; DIBLÍK, J.; KHUSAINOV, D.: Estimates of expo-
nential stability for solutions of stochastic control systems with delay. Abstract and Applied
Analysis. 2011. 2011(1). pp. 1-14. ISSN 1085-3375. (IF=1,318).

66



67 
 

INTERACTIVE SCHOOL EXPERIMENTS IN THE PSE GRAPHICAL 

ENVIRONMENT 
 

Fabo Peter, Pavlíková Soňa 
 

Research Centre, University of Žilina 

Univerzitná 8215/1, 010 26 Žilina, Slovakia 

fabo.peter@gmail.com 

 

Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava 

Radlinského 9, 812 37 Bratislava, Slovakia 

sona.pavlikova@stuba.sk 

 

 

Abstract: The paper presents usage of PSE graphical environment based on the Python 

programming language for creating simple educational experiments. PSE environment allows 

solving problems using graphical components - a high level blocks with defined properties as 

well as a creation of user-defined components. With the help of simple and readily available 

hardware components such as the Arduino, it is possible creating demonstration experiments. 

In the second part of the paper we will show some possibilities for the demonstration of 

solutions of linear and nonlinear differential equations with examples of classic bifurcation 

diagrams. By way of simple examples, are shown basic characteristics of Z-transform and its 

use in the implementation of digital filters. 

 

 

Keywords: programming, education, python, simulation, numpy, scipy, matplotlib, 

difference equations 

 

 

INTRODUCTION 

 

PSE (Python Simulator Editor) is an open-source block-oriented simulation environment 

developed in Python, primarily focused on the creation of general simulation models. The 

environment uses the extensive infrastructure of Python [1], PyQt application framework [2], 

libraries for scientific computing NumPy and SciPy [3] and visualization library Matplotlib 

[4]. In the development of PSE environment was placed a major emphasis on its openness, the 

user can modify the environment, expand and add new components, and thus it differs from 

other commercial and open alternatives. 

 

The environment allows you creating simulation models in the form of diagrams by 

the transfer of mathematical relations into visual form through components that contain 

individual algorithms to transform information and oriented connections between individual 

components in Fig. 1. Connections in each simulation step move data among components and 

the information can be scalar or vector. 
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Fig. 1. A typical diagram of the PSE environment. The implementation of the transfer 

function and the time domain response to an input signal, simulation algorithm is Runge-

Kutta method of the second order. 
 

The components are arranged in libraries, classed according to their functionality or 

meaning. Typical library components include: 
 

 Sources - sources of information - generators, data from a file, retrieve information 

from connected devices and the Internet  

 Sinks – information consumers- write to a file, console output, graphs, send 

information into the Internet 

 Control – components for communication control 

 Linear – components for linear transformation of information 

 Nonlinear – components for non-linear transformation of information 

 Signal – components for editing connections, aggregation of scalar connections to 

vector and vector connections to scalar 

 Discrete – discrete and logic components  

 Interactive – components for interactive control of the diagram during a simulation 
 

Components of all the groups in the diagram can be combined freely. Individual library 

components for better orientation in the diagram graphically distinct. The simulation of larger 

diagrams is possible by creating separate diagrams – blocks, and use them in the simulation as 

separate components. The blocks can be used as separate components as they are expanded in 

the diagram as a macro with a separate namespace, Fig. 2., Fig. 3. 
 

 
Fig. 2. The diagram used to form the block. It does not contain the simulation control 

component  
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Fig. 3. Use of the block from Fig. 2. in a simulation. The block is identified by the name of 

the diagram from which was created and it is possible to use it repeatedly 
 
 

1. ELEMENTARY INTERACTIVE DEMONSTRATION IN THE PSE 

ENVIRONMENT 
 

There are used only the properties of the PSE environment, user interaction with a 

simulated process if necessary, is conducted through any of the standard user interface 

components (Button, Slider, Dial, etc.) inserted into the diagram. The purpose of the 

simulation is the demonstration of the topic with the possibility of changing the parameters of 

the simulated process, Fig. 4., Fig. 5.. 

 
Fig. 4. Elemental demonstration of perpendicular oscillations composition. Simulation results 

can be varied by changing the operating parameters of the signal components.  
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Fig. 5. Simulation of a logic circuit, gated RS toggle circuit in real time (StopTime = -1). Data 

on the input can be changed using the True/False button, status signals are displayed in the 

real time on a graph and the status of data output is shown by a 'LED' indicator. 

 

2. SIMPLE EXPERIMENTS WITH TECHBOARD INPUT MODULE 
 

For teaching the fundamentals of programming using the Scratch [5] application, was 

developed TechBoard input module. The module is backwards compatible with the original 

PicoBoard [6] module, but with wider options of peripherals connectivity and robust 

mechanical construction. The module communicates via USB and communication in Python 

is possible using the standard library Serial. 

 

The standard module PicoBoard contains light sensor, sound sensor, button, slide 

potentiometer input and four (AD) inputs for measuring voltage resistive divider. TechBoard 

as a modified version, allows you connecting external devices - joystick, buttons, light 

barriers, resistance temperature sensor, etc. Inputs A and C are numerically linearized, so that 

when connected potentiometer, the output value is linearly proportional to the resistance. The 

values of the inputs B and D are proportional to the voltage on resistive divider and the top 

resistor of the divider (2k) is a part of the module. In the PSE environment is the module 

represented by the block, which generates a vector of the sensor and input values. Application 

example of module usage is shown in Fig. 6. 
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Fig. 6. TechBoard module and its usage in the PSE environment 

 

The module allows interactive control of simulation, like the components of the PSE 

environment. More interesting in educational practice is the use the module for simple 

physical experiments in elementary and secondary schools, especially in the field of time data 

collection from sensors – i.e. demonstration of exponential course of the cooling liquid, light 

conditions during the day and the passing clouds. Period of data collection module can be 

controlled by a timer, the minimum period is 0.1 sec. 

 

3. ARDUINO AS AN PSE INTERFACE TO THE REAL WORLD 
 

Arduino [7] is a popular and affordable platform for teaching the microcontrollers 

technology, control and robotics. The Arduino programming environment is available with a 

library for connecting typical peripherals - motors, servos, interface I2C, SPI, and many 

others. From the pedagogical point of view Arduino suffers from (and also all similar 

platform based on a microcontroller) a problem of tracking and debugging the program. 

Control algorithm is stored in the memory of the microcontroller and without special aids it is 

possible to learn about the state of a program only through a change in the state of selected 

module terminals or over UART to the console.  

 

Using a simple programs downloaded to the Arduino allows its usage as a relatively quick 

input-output device connected via USB, while at the maximum communication speed is real 

time of information exchange between the PSE and the Arduino platform less than 2 msec, 

which is sufficient for regular school experiments. Since the Arduino platform is rather 

flexible, its inputs and outputs can be optimized for the given experiment. From the 

pedagogical point of view is important, however, that the actual control of the experiment 

runs under the PSE environment in real time. It is therefore possible to interactively optimize 

and present the state variables of a controlled process. A simple use example is the optical 

target tracking - infrared diodes using two reception diodes, rotated by servos, Fig. 7., Fig. 8., 

and video [8]. 
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Fig. 7. The experiment set with objective of target tracking (optical tracking system), 

servo is controlled by Arduino PWM output, two receiving photodiodes are connected to the 

inputs of A/D converters of  Arduino A0 and A1. 

 
Fig. 8. Control of the experiment from Fig. 7. Communication with Arduino is 

represented by a component that mediates communication and a conversion of input-output 

values.  
 

4. THE USE OF THE PSE BLOCK GRAPHICS USER INTERFACE FOR 

A DEMONSTRATION OF SOLVING DIFFERENCE EQUATIONS 
 

We will present features of open source PSE graphical environment, based on the Python 

programming language and its possibilities for the demonstration of solutions of differential 

linear and nonlinear equations with examples of bifurcation diagrams. The essential 

characteristics of Z-transform and its use in the implementation of digital filters will be shown 

through simple examples. 
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 Differential count has an important application in Mathematics itself (in numerical 

mathematics, especially in the numerical solution of differential equations, probability theory, 

number theory), but also in such applications as in civil and electrical engineering. 

 

 For n = 0, 1, ... , n and function  x(n) is defined difference operator   as follows: 

  ( 1) ( )x n x n x n     

Higher ordinary differences for natural number m are defined as follows: 

 1 ( )n nx n x n        

 Difference equation of one independent variable n N  and one unknown function 

( )u n  is a functional equation that has the form: 

      , , 1 ,...., 0f n u n u n u n k    

Let us show some simple examples of difference equations and systems of difference 

equations. 

 

Examples: 

 

1. Logistic map 

      1 1x n rx n x n    

 

r is a given constant, 0x  is the initial value and each sequence is determined by the given  

equation. 

 

2. Digital filter  
 

Digital filter with finite impulse response (FIR) can be described by difference equation of the form  
1

0

n

n k n k

k

y h x






  

The digital filter with infinite impulse response (IIR) is characterized by recursive difference 

equation in the form 

1 1

0 0

M n

m n m k n k

m k

a y b x
 

 

 

   

3. Predator-prey model is described by a system of difference equations 

         1 , , 0x n x n ax n bx n y n a b       

         1 , , 0y n y n py n qx n y n p q      

and set values x(0), y(0). 

 

4. Model rivarly 

         1 , , 0x n x n ax n bx n y n a b      

( 1) ( ) ( ) ( ) ( ),   p, 0y n y n py n qx n y n q      

 

 Difference equations can be solved in addition to analytical methods using Z - 

transform. In the following examples are presented solutions of difference equations using 
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simulation models. Examples are useful in education especially for students of study fields in 

informatics, automation, robotics, electrical and so on. 

 PSE simulation environment was created as an open source software, developed 

exclusively in Python [1] using its extensive libraries. The emphasis in the development of 

PSE was first put on its openness, possibilities of expansion and modifications, which is 

different from the commercial option. 

 

PSE was primarily developed for the creation of simulation models, its usage is also as 

an interactive tool for demonstration of selected topics in the teaching process at secondary 

schools and universities. 

 

 

5. DIFFERENCE EQUATIONS SIMULATIONS 
 

 A typical difference equation consists of a combination of input and output values 

mutually displaced in the multiples of discrete time intervals. The basic component of the 

simulation of difference equations is therefore a component time unit shift of the input value 

in the standard Z-transform marked as 1z . 

 
Fig. 9. Component unit delay. The delay time is defined by Solvera iteration step and the 

delay time is defined by an external timing. 

 

 

Examples 
 

 Fig. 10. shows a block structure with a simple difference equation representing the 

band digital filter of the second-order. The use of the block to filter a periodic signal is shown 

in Fig. 11. The time delay is defined by the simulation parameter. 

 

 

 
Fig. 10. IIR block structure with difference equation. 
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Fig. 11. Usage ob block from Fig. 10. 

 

Block structure of a more complicated difference equation is in Fig. 12. 

 

 

 
 

Fig. 12. The structure of differential equation of IIR digital filter divided into an input and 

output section. 

 

Difference equations describing the evolution of the population in the time, referred to as 

logistical view, can produce non-stationary solutions and chaos. Non stationary parametric 

solution simulation of difference equations is shown in Fig. 13.  
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Fig. 13. Bifurcations in one-dimensional discrete dynamical system. 

 

 

 

CONCLUSION 
 

The limited scope of this paper does not describe all the possibilities of the PSE platform in 

the pedagogical process in details. In short, we can mention the creation of interactive 

textbooks in the environment Ipython Notebook [9], management of laboratory equipment via 

TCP/IP or specialized buses and acquisition respectively processing data from the 

experiments. Attractive is also a communication of separate PSE environments in the Internet 

environment via UDP packets and the ability to create interactive experiments distributed to 

students, such as observation of the weather in a wider geographical area, sharing of joint 

experiments and the like. At the stage of experimental verification are specialized input-

output modules for applications in robotics, mechatronics and physics experiments. 

 

Platform PSE is freely available at [10], documentation, examples, and tutorials are 

available at [11]. 
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Abstract: Introduction of modern information and communication means is significant means 

of modernizing and raising attractiveness in educational process. The main goal of these 

modernizing tendencies is continual increase of educational level corresponding to the 

current level of knowledge in individual subjects with a respect to the age of a student and 

type of a school, which one studies at. Information and communication means also became 

the part of university education, where their utilization mainly serves to development of inter-

subject relations. The paper deals with the possibility of using application software such as 

Matlab, MS Excel and Mathematica in educational process of natural science and technical 

subjects. Suitability of utilization of computer means is presented at solving the problem from 

electrical engineering – solving differential equations of second order and describing time 

dependencies. 

 

Keywords: information and communication technologies, software means, MATLAB, 

Mathematica, MS Excel 

 

 

INTRODUCTION 

 

The most distinctive feature of the present time is implementation of information and 

communication technologies into everyday lives of people. These changes influence not only 

private (spending free time, communication) and work spheres, but also educational process. 

One of the most important tasks in educational area is to work out such programs and 

methods, at which computers would become common work tools of a teacher and at the same 

time they would not eliminate development of creative thinking of a student. Nowadays the 

issue of using computers in educational process is very often discussed at various levels. As a 

result of those discussions, it can be said that computers form reliable and attractive 

environment for learning, provide positive feedback, help to create shapely correct text, 

respect individual requirements , pace, speed and skills, allow to return to the problem and 

start or finish work in various places, help students with specific disorders of learning and 

handicapped students to learn, make rich information sources available, comprehensibly 

present complex advancement of thoughts and relations by means of graphics, offer 

environment for development of students thinking 1, 2. 

 

Information and communication technologies support non-traditional forms of education (e.g. 

e-learning) and can contribute to development of lifelong education that is inevitable for 

continuous renewing and gaining necessary knowledge and skills for life in digital world. 

Using information and communication technologies means possibility to improve learning 

and thinking in many ways [3], 4. 

 



79 
 

Information technologies present one of the factors, due to which mathematical education is 

continuously changed, transformed and modernized. Teaching natural science and technical 

subjects using mathematical apparatus at technical schools is not easy and the task of 

pedagogues is to make educational process interesting, extraordinary and attractive. 

 

In the following part of the paper the possibility to make teaching the subject of electric 

engineering by means of computer support of MS Excel, Matlab and Mathematica programs 

more effective is presented by particular example of solving transient performance in RLC 

circuit. 

 

 

1.  PHYSICAL ANALYSIS OF THE PROBLEM 

 

Problem: Calculate and depict the course of voltage and current in the capacitor in RLC 

circuit with parameters  5R , HL 1,0 , FC 100  connected to voltage Vu 10 , if 

voltage in the capacitor at the switch was V0  and current flowing through the circuit at the 

moment of switching the circuit was zero 5. 

 

Solution: It is a series electric circuit with R, L, C connected to harmonic voltage with initial 

conditions     00,00  stusti C  (Fig. 1). 

 

 
Fig. 1. RLC series circuit 

 

Electric current, which flows through the circuit at given moment, can be determined by 

means of 2nd Kirchhoff´s Law. For electric voltages in the circuit we get 

uuuu RCL   (1) 

 

where RCL uuu ,,  present momentary values of voltage on the reel with L induction, capacitor 

with C capacity and resistance with R value. 

For momentary values of voltage we have 

Riuidt
C

u
dt

di
Lu R

t

CL   ,
1

,

0

 (2) 

 

and for the current flowing through capacitor we have 

dt

du
Ci c  (3) 

 

If we substitute (2), (3) equations into (1) equation we get 
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u
dt

du
RCdt

dt

du
C

Cdt

du
C

dt

d
L

uRiidt
Cdt

di
L

C
t

CC

t
















0

0

1

1

 (4) 

We got linear integral-differential equation. For further solving it is suitable to transpose (4) 

equation into differential equation 

uu
dt

du
RC

dt

ud
LC C

CC 
2

2

 (5) 

 

It is a linear differential equation of second order with constant coefficients with right side. 

Such a differential equation can be solved either analytically or numerically. Analytic solution 

of this equation requires considerable mathematical knowledge and skills. On the other side 

numeric solution requires computer skills (or skills with application software). 

 

 

2.  ANALYTICAL SOLUTION OF THE PROBLEM 

 

General solution of the equation can be found as total of general solution of the appropriate 

linear differential equation with constant coefficients without right side (Y) and particular 

solution of linear differential equation with constant coefficients with right side (YP) [6] 

PYYy  . 

 

After substitution of numeric values into (5) equation we have differential equation 

1010510 4

2

2
5  

C
CC u

dt

du

dt

ud
 

 

The solution is presented in PC UUu  . Firstly, the solution of differential equation is 

found. The right side of differential equation of second order with constant coefficient equals 

to zero and equation is solved by means of characteristic equation 

0110510 425     

The equation is adjusted into  

0
10

1050

01
10

5

10

5

52

45

2










  52 1050    

The solution of quadratic equation 
 

2

39750050

12

10145050 52

2,1







  

Since discriminant of the equation is negative, the solution is presented by two complex 

associated roots 

1592525

1592525

2

1

i

i








 

The solution of differential equation on R is a complex function 

)sin(cos)( bxbxeeeeeY axibxaxxibax   , where two functions 
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bxeybxey axax sin,cos 21  ,  which are linearly independent to R and create fundamental 

system of equation solutions, are given. General solution is 2211 ycyCY  . 

General solution of the equation is as follows 

)15925sin()15925cos( 25
2

25
1 teCteCU tt   . 

 

Particular solution (YP) of linear differential equation with special right 

side xexxSxxRxf  ]sin)(cos)([)(  can be determined by the method of estimation of 

particular solution, where R(x) is a particular multinomial of r grade, S(x) is a particular 

multinomial of s grade, ,  are concrete numbers. 

 

It is valid that srxf ,0,0,010)(    is not determined. For our equation we 

have AuP   and thus 10PU . 

 

The entire solution of the equation can be expressed as follows 

10)15925sin()15925cos()( 25
2

25
1   teCteCtu tt

c  

C1 and C2 constants can be determined from initial conditions     00,00  stusti C , so 

we have 

100

10

10)015925sin()015925cos()0(

1

1

025
2

025
1





 

Cu

Cu

eCeCtu

c

c

c

 

C2 is determined from the following condition 00 
dt

du

dt

du
Ci CC . 

It is valid for C2 that 

    

     015925)15925cos(15925sin)25(

15925)15925sin(15925cos)25(

25
2

2525
1









tteC

teteC
dt

du

t

ttC

 

    

     015925)015925cos(015925sin)25(

15925)015925sin(015925cos)25()0(

025
2

025025
1









eC

eeCt
dt

duC

 

   

159

10
015925)10(250)0(

1592525)0(

01592500)25()0(

22

21

21







CCt
dt

du

CCt
dt

du

CCt
dt

du

C

C

C

 

 

Analytic solution of the differential equation (expression of dependence of voltage on time) is 

as follows 

10)15925sin(
159

10
)15925cos(10)( 2525   tetetu tt

c  (6) 

 

It is valid for dependence of current on time that 
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







  10)15925sin(

159

10
)15925cos(1010 25254 tete

dt

d

dt

du
Ci ttC  

 

After substitution we get 

 tei t 15925sin
159

4 25  (7) 

 

For dependencies of voltage and current on time the graphs of dependencies given by (6) and 

(7) equations are described in MS Excel program (Fig. 2 and Fig. 3). 

 

 
 Fig. 2. Dependence of voltage on time Fig. 3. Dependence of current on time 

 

Analytic solution of the system of differential equations is difficult, it requires considerable 

mathematical knowledge and skills from the theory of solving differential equations and 

obviously does not lead to simple dependencies and results. Therefore the problem will be 

solved numerically by using MATLAB [7], [8]. 

 

 

3.  NUMERICAL SOLUTION OF THE PROBLEM IN MATLAB 

 

Efficiency of educational process can be increased by application of some modern teaching 

methods. One of them is implementation of information and communication technologies into 

teaching such as utilization of means of MATLAB at solving differential equations. 

 

MATLAB presents highly efficient language for technical calculations. It combines 

calculations, visualization and programming into simply usable environment. It is an 

interactive tool in which the basic data type is the field without necessity to declare its 

parameters. This property together with number of in-built functions enables relatively easy 

solution of many technical problems. In school environment MATLAB is a standard tool in 

teaching mathematics and other technical subjects, but it is also an efficient tool for research, 

development and data analysis [9], [10]. 

 

MATLAB is closer to the programming language compared to other similar products. From 

didactic point of view it is a suitable system, because it does not require complicated 

programming formulae and after relatively short time a beginner can manage to work in 

MATLAB. On the other side it presents a strong tool for experienced users. MATLAB does 

not have so many prearranged mathematical functions as for example MATHEMATICA. It 

does not have integrated properties such as MathCad. Support of symbolic calculations is not 

its standard part as it is at above mentioned products. However, it does not mean that 

MATLAB is depleted of these possibilities. It contains more than 500 simple or more 
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complex mathematical functions implemented in the form of highly efficient and robust 

algorithms. From these functions it is possible to compose arbitrarily other functions. Sets of 

functions suitable for solution of a certain type of problems in MATLAB are called toolboxes. 

SIMULINK is an independent extension of MATLAB – solution of the system of nonlinear 

differential equations with a graphic entry of the system being solved. It enables graphically 

to observe dependencies of parameters at any connection point. It is used for simulation of 

dynamic behavior of the observed system. It is possible to use MATLAB in case of robust 

calculations, processing of extensive data files, work with large matrices and in cases when 

solution of the problem can be converted into vector and matrix operations. With regard to 

programming possibilities it is advantageous to use MATLAB also in case of branched or 

iterative algorithms of solution. 

 

It is necessary to realize at the solution of differential equations of higher order in MATLAB 

that every differential equation of higher order can be transposed to the equivalent set of 

differential equations of first order with known initial conditions. At the problem solution it is 

suitable to transpose the differential equation of second order (5) to the set of differential 

equations of first order (8) as follows 

L

iRuu

dt

di

C

i

dt

du

C

C

.




 (8) 

 

Basic standard function for the solution of differential equations is ode45 function, which 

syntax is: 

[t,y] = ode45 (´name of the_function´, time_interval, initial_conditions) 

 

where name of the_function is reference to the function describing the set of differential 

equations, the parameter of time_interval is presented by the vector with two elements – 

initial time of solution 0t  and final time of solution t , the parameter of initial_conditions is 

presented by the vector of initial conditions 0y  from which we find 00 )( yty  . Two 

parameters are the output of the ode45 function: t  - the vector that contains instants of time, 

in which solution values are determined and y  - the matrix containing its own solutions. To 

depict the current and voltage dependence on time, program writing in MATLAB is used, 

where the initial problem parameters, time and properties of depicted voltage and current 

dependences are given. 

The following initial parameters are used at the problem solution:  5R , HL 110 , 

FC 410 , Vu 10 . 
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The result of the program initialization is depiction of time dependence of the voltage and 

current of the RLC series circuit (Fig. 4) 

 

 
Fig. 4. Voltage and current flow in the RLC circuit 

 

 

4.  THE PROBLEM SOLUTION IN MATHEMATICA PROGRAM 

 

Mathematica is a computational software program used in scientific, engineering, and 

mathematical fields and other areas of technical computing, which we use to solve the 

problem. The parameters of the problem are substituted into the equation (4) and equation is 

written into the Mathematica program as   10))(^-410*5()(^-5)10(  udtdudtdtdud . 

After the program initialization we have the solution for voltage: 

    1015925sin15925cos)( 25
2

25
1   teCteCtu tt

C  
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where the solution of the equation is the sum of general solution of the appropriate equation 

without the right side cu  and optional particular solution Pu , t. j. PcC uutu )( . The 21,CC  

constants are determined on the basis of the initial conditions. The result of the solution of our 

differential equation is (6) 

    101592500sin
159

10
1592500cos10)( 25002500   tetetu tt

C  

 

The result of the problem solution after substitution of initial parameters in Mathematica 

program can be found in Fig. 5. 

 

 
Fig. 5. Solution of differential equation in Mathematica program 

 

The graph of voltage dependence can be found in Fig. 6. 
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Fig. 6. Voltage characteristics of RLC circuit 

 

For the current we have: 

 
 

159

1592500sin400 2500 te

dt

du
Cti

t
C



  (8) 

The equation (8) is written into the Mathematica program as follows 

isqrttsqrte )159()*)159(*2500(sin*t))*^-(2500(*400 . The graph of current dependence 

can be found in Fig. 7. 

 
Fig. 7. Current dependence of RLC circuit 

 

 

CONCLUSION 

 

The presence of information and communication technologies in teaching has positive 

influence on efficiency of educational process and students accept them very positively. 

Based on the results it can be said that it is possible to facilitate and improve educational 

process by suitable combination of classic teaching methods and introduction of new elements 

using information and communication means. Gradual introduction and utilization of 

computer technique into teaching natural science and technical subjects at universities is one 

of the significant elements of modernizing technical and natural science education. The main 

goal of these modernizing tendencies is continual increase of educational level corresponding 

to present-day degree of knowledge in individual teaching disciplines with the respect to the 

age of a student and type of school studied. On the other side teaching these subjects with the 

support of computer technique cannot be understood in any case as a universal way how to 

solve the problems in educational system. 
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Abstract: In this work we review the construction of solutions of linear equations of second 

order stationary with delay. We have special functions called lagging exponentials, and there 

combinations by which obtained a solution of the Cauchy problem. We studied real 

eigenvalues of different signs, eigenvalues of complex conjugate eigenvalues, eigenvalues of 

really different. 

 

Keywords: differential equation, delay, solutions 

 

 

INTRODUCTION 

 

Let's consider the linear differential equation of second order with constant coefficients. In the 

absence of delay, it has the form 

       tftqxtxptx   

and finding solutions of the Cauchy problem  
0

0 xx  ,  
0

0 xx  , the equation reduces to the 

investigation of the roots of the characteristic equation  

02  qp . 

In this report we reviews the differential equations with delay  

       tftqxtxptx   2 . 

The characteristic equation corresponding to the equation has the form 022    qeep . 

This transcendental equation, and it has a countable number of roots. 

We have special functions called lagging exponentials, and there combinations by which 

obtained a solution of the Cauchy problem    ttx  ,    ttx  , 02  t . . 

 

1. THE EIGENVALUES ARE REAL, DIFFERENT SIGNS. 

We consider the equation without delay 

     tftxtx  2 , 0t .                                          (1.1) 

The solution of the homogeneous equation which satisfying the initial conditions  

 
0

0 xx  ,  
0

0 xx  .                                             (1.2)  

It has the form  

     tttt

od
eeeextx  




2

1

2

1
0

.                             (1.3) 

A particular solution of the inhomogeneous equation which satisfying zero initial conditions, 

we search in the form of Cauchy 

     
t

ch
dssfstKtx

0

, ,                                            (1.4) 
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Cauchy kernel has the form       stst eestK  



2

1
, , 

And the solution of the Cauchy problem of the inhomogeneous equation (1.1) with non-zero 

initial conditions (1.2) has the form  

     


  tttt eexeextx
00

2

1

2

1       
 



t
stst dssfee

02

1
.        (1.5) 

If we denote    tt eetx  
2

1
1

,    tt eetx  



2

1
2

, 

the dependence takes the form   

      txxtxxtx
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t
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2
.                          (1.6) 

 

The equation of the second order with delay. We consider the equation with one constant 

delay  

     tftxtx  22 , 0t                                        (1.7) 

We get it solution that satisfies the initial conditions 

   ttx  ,    ttx  , 02  t .                                 (1.8)  

It is shown that there is a representation of the solution in a form similar to the dependence 

(1.6). 

 

Definition 1.1. A lagging exponential  t,exp 


 with indicator   and delay   is a function 

that has the form  
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We introduce two functions which are linear combinations of exponentials delayed. 

      tttx ,exp,exp
2

1
1



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1
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

. 

As the presentation of the delayed exponential  t,exp 


, we have the following dependence  
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We received the following statement. 

 

Theorem 1.1. The solution of the Cauchy problem (1.2) for the homogeneous equation with 

delay can be written as  

         



0

2

221
)(222)(



 dssstxtxtxtx ,          (1.12) 

Where  tx
1

 represented in (1.4) and  tx
2

 presented in (1.5). 

 

Theorem 1.2. The solution of the Cauchy problem with zero initial conditions   0tx , 

  0 tx , 02  t  for the inhomogeneous equation has the form  

  
t

dssfstxtx
0

2
)()( , t ,                                        (1.13) 

 

2. THE EIGENVALUES OF THE COMPLEX CONJUGATE.  
Let the eigenvalues of the characteristic equation are equal  

 
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4
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1
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1
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2

2

1
4pp   and eigenvalues of the complex conjugate, i.e. iqp 

2,1
 , 

1
2

1
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2

12
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2

1
ppq  . Then the general solution of the homogeneous equation is given without 

delay  
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p
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q
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a particular solution satisfying zero initial conditions       
t

ch
dssfstxtx

0

2
. 

Definitively, the solution of the Cauchy problem of the inhomogeneous equation (1.1) with 

non-zero initial conditions (1.2) has the form 

     
0201

xtxxtxtx      
t

dssfstx
0

2
.                          (2.2) 

The equation of the second order with delay. Consider the homogeneous differential 

equation with delay 

      02
21

  txptxptx , 0t .                         (2.3) 

 

Definition 2.1. A lagging exponential  t,exp
1


  with indicator of the complex iqp 
1
  

and delay   will be the function that has the form 
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Let's consider auxiliary statement. 

Lemma 2.1. occurs of ratio  
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Lemma 2.2. Delayed exponential  t,exp
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
 (with the index iqp 

1
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written in the form of a complex function      tqpivtqput ,,,,,exp
1 
  , 

Where 

 





































............................................................................

)1(,
!

])1([
cos

!1
cos1

...,...

2,
!2

)(
2cos

!1
cos1

,0,
!1

cos1

,0,1

,,0

,,
2

2



















ktk
k

kt
kr

t
r

t
t

r
t

r

t
t

r

t

t

tqpu

k

k

             (2.6) 

 





































............................................................................

)1(,
!

])1([
sin

!1
sin

...,...

2,
!2

)(
2sin

!1
sin

,0,
!1

sin

,0,0

,,0

,,
2

2



















ktk
k

kt
kr

t
r

t
t

r
t

r

t
t

r

t

t

tqpv

k

k

               (2.7) 

Lemma 2.3. Delayed exponential  t,exp
2



, (with the index iqp 

2
  and delay  ) can 

be written in the form of a complex function      tqpivtqput ,,,,,exp
2 
  . 

 

Theorem 2.1. Delayed exponential  t,exp
1



 with the index 

iqp 
1
 , 

1
2

1
pp  , 2

12
4

2

1
ppq                              (2.9) 

it is the solution of differential equationa with delay (2.1) satisfies the initial condition  

  1tx , 0 t .                                               (2.10) 

 

Similarly, we can prove. 

Theorem 2.2. Delayed exponential  t,exp
2



 with an exponent  

iqp 
2

 , 
1
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1
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1
ppq                              (2.11) 
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It is the solution of differential equation with delay(2.1) which satisfying the initial conditions 

(2.10). 

 

We introduce two functions wich is a linear combination of delayed exponentials  t,exp
1



, 

 t,exp
2



. 
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Here the parameters 
1
 , 

2
   are defined in (2.9), (2.11). 

As follows from the representation (2.3) of the delayed exponential  t,exp 


, the following 

dependence takes place 
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forasmuch as 2
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Here we obtain 
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Similarly for the function  tx
2
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        (2.12) 

 

Corollary 2.1. A linear combination  tx
1

 with delayed exponentials is the solution of the 

differential equation with delay (2.1). 
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Corollary 2.2. A linear combination  tx
2

 of delayed exponentials is a solution of the 

differential equation with delay (2.3) wich satisfying the initial condition 

  ttx  ,  t0 .                                              (2.13) 

 

Based on the above allegations we get Representation of solution of the Cauchy problem for 

equations with complex conjugate eigenvalues. 

 

3. THE REAL EIGENVALUES, DIFFERENT. 

Let the eigenvalues of the characteristic equation  
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Cauchy kernel has the form  
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, 

and the solution of the Cauchy problem of the inhomogeneous equation (1.1) with non-zero 

initial conditions (1.2) can be written in the same integral form. 

 

Let's consider homogeneous differential equation with delay  
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We introduce two functions it is a linear combination of delayed exponentials  t,exp
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As follows from the representation (2.3) of the delayed exponential  t,exp 
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, have the 

following depending 
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Corollary 3.1. A linear combination  tx
1

 of retarded exponentials is a solution of the 

homogeneous differential equation with delay satisfying the initial conditions (3.4). 

 

Corollary 3.2. A linear combination  tx
2

 of delayed exponentials is a solution of the 

differential equation with delay satisfying the initial conditions   ttx  ,  t0 .    

                                              

With using of the above functions we obtain a solution of the Cauchy problem for the 

equation with delay. 
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Abstract. A piece of metal can be deformed permanently if it is pulled sufficiently hard in 

tension, compression or is twisted through a large enough angle in torsion. When the stress is 

removed, the dimensions of the piece of metal do not return to their original values as they 

would do if the deformation were elastic. The permanent distortion suffered by the metal 

specimen is called plastic deformation. The chief mechanism by which plastic deformation 

occurs is the motion of dislocations. Because there are an immense number of ways in which 

dislocations can bring about plastic deformation it is not surprising that this phenomenon is 

quite complex. The character of plastic deformation is a sensitive function of such variables 

as temperature, the strain rate of deformation, the past history of the sample, crystal size, and 

if the sample is a single crystal, the orientation of the axes with respect to the stress system. 

Much interest has recently been taken also in the influence which small quantities of foreign 

elements may have on the properties of metals. In fact, impurities play an important part in 

metal physics research. They form a particular species of point defects, and are able to 

interact with the other lattice defects which exist in the metal and determine a great number 

of its properties.  

 

It is the purpose of the present work to examine the temperature and solute atoms 

concentration influence on mechanical properties of Cd-Zn single crystals alloys. The author 

wish to express his thanks to Prof. Dr. Pavel Lukáč, DrSc., and Doc.Dr.Miloš Hamerský, CSc  

For the valuable discussions which have preceded the original of this work. 
 

 
 

Keywords:, thermodynamics, dislocations, creep, stress exponent, dynamic strain aging. 

 

 

1.   INTRODUCTION  

 

There exist many ways of producing the plastic deformation of solids. One of the simplest and 

most applicable is the deformation by a tensile force, the so-called tensile test. In the present 

paper we shall investigate the plastic behavior of Cd-Zn single crystals by means of then 

tensile test, called creep. Creep is a tensile test where a specimen undergoes a continuous 

deformation under a constant load or stress. 

 

When a solid is subjected to a static force, the atomic lattice will adjust itself to oppose the 

applied force and maintain equilibrium. On a macroscopic scale the atomic adjustment is 

observed as a deformation which can be measured macroscopically. The deformation referred 

to unit elements of the length of the sample and thus converted into the dimensionless 

quantity is called “strain ”. The response of strain to the applied stress  varies with the 
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magnitude of this stress, temperature and strain rate. Experimental evidence conclusively 

shows that the creep flow is thermally activated. It means that the local thermal agitation 

provides additional energy, beyond that provided mechanically, to overcome barriers to creep 

deformation. From the physical viewpoint it means that creep is a suitable method for 

investigating these processes, because the plastic deformation can occur under a constant 

stress owing to these processes only. The applied stress aids in overcoming these barriers and 

serves to give direction to the resultant flow. 

 

  

 
 

 

  Fig.1. Schematic representation of a creep- rupture curves  

 

The creep of metals can be demonstrated directly by a creep curve which represents 

graphically the function between creep strain and time. An idealized creep curve is shown 

schematically in Fig.1. The strain 0 is obtained immediately upon loading and exhibits 

characteristics of plastic deformation, but, of course, also includes elastic deformation. 

Between 0 and 1 the creep rate decreases continually. This period of the creep curve is called 

“primary creep”. Between 1 and 2 the creep rate remains nearly constant, indicating a nearly 

steady-state condition. This part of the creep history in which the strain rate d/dt remains 

nearly constant is called “secondary creep” or “steady state creep”. Beyond 2 the creep rate 

increases until rupture occurs at the strain r and rupture time tr. The period of increasing 

creep rate is called “tertiary creep”. In the present paper we shall mostly deal with the primary 

(transient) creep of Cd-Zn alloys. The suitable method for studying the transient creep it is the 

incremental loading method, which has been used by a number of authors [1-5, 10-12]. There 

are two variants of this method: 

a) The creep deformation occurs by incremental loading with increments so that the next 

increment is added when the strain rate decreases to value fixed before (Fig.2a). 

b) The sample is gradually loaded with increments in constant time intervals (Fig.2b). 

 

We used the second one method and thus we obtained many curves of the transient creep on 

one sample and we could follow the character of the transient creep curves on the applied 

stress or strain. 
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   a) 
 

 
   b) 

   Fig.2. The incrementally loading method 

 

The creep measurements have been performed using the equipment designed by the 

Department of General Physics, Faculty of Science, Masaryk University in Brno. Its working 

mechanism is schematically illustrated in Fig.3.  

 

 
  

   Fig.3. Schematic drawing of the creep apparatus 

 

 

The loading lever is carried on a hardened steel seat and the leverage ration is 5 : 1. Shots 

which are added into the vessel attached at the end of the lever are used for loading the lever. 
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The elongation of the sample is measured by means of a linear variable differential 

transformer (G.L.Collins Corp., Long Beach, USA). It is situated at the end stretch rod. The 

range of measurement from the viewpoint of necessary linearity is about ± 0,3 cm. The 

sensitivity is stated to be about 2V/mm by the DC feeding 6 V from the stabilized power 

supply Tesla BS 448 E.The linearity of the above mentioned range of measurements is 0,95%. 

By means of a potentiometer connection a suitable sensitivity for each measurement has been 

obtained. During the tests the output of the transformer is continuously recorded usány the 

linear recorder EZ 4 or EZ 11. The whole equipment is situated on a concrete base to ovoid 

possible vibration.  

 

The temperature was measured by means of a platinum resistor or a Pt-PtRh thermocouple 

which were placed near the sample or on its surface.  

 

The flow stress of a crystal a can be decomposed into two components i and *. The first one 

reflects the microstructure (internal long range elastic interactions among obstacles and 

dislocations). The second component (*) is the stress necessary to push dislocations over 

local energy barriers (small obstacles, an intrinsic lattice resistance). Then we can write 

 

 
  ia          (1) 

 

Internal stress i is slowly decreasing with increasing temperature (similarly as elastic 

constants). Short range interactions of dislocations with energy barriers (described by *) 

takes place in such a small volume that it is strongly influenced by thermal vibrations. 

Thermal activation helps dislocation to overcome these barriers thus the flow stress is 

decreasing with increasing temperature. These short – range thermally activated processes 

govern almost all the temperature dependent mechanical properties of materials for example 

dynamic strain aging. The dynamic strain aging occurs usually in the intermediate 

temperature range (usually 0,3 – 0,4 Tm, where Tm is melting temperature). Among exterior 

features of dynamic strain aging phenomenon include Portevin – Le Chatelier effect, yield 

stress plateau and blue brittleness. 

2.  THERMALLY ACTIVATION THEORY 

 

The concept of thermally activated plastic deformation was introduced as early as 1925 when 

Becker [1] applied the Boltzmann principle to the nucleation of a slip region. After the 

introduction of the absolute reaction rate theory of Eyring [2], Kauzmann [3] formulated a 

general chemical rate theory of plasticity. Similar equations were derived by Seitz and Read 

[4] based on thermally activated dislocation motion and by Nowick and Machlin [5] based on 

thermally activated dislocation generation. Later many efforts have been concentrated on 

definition of activation parameters, its measurement and interpretation [6, 7]. 

 

2.1. Activation parameters 

 

The average velocity of a dislocation traveling in an crystal can be considered as a thermally 

activated process, governed by the Arrhenius type equation 

 

 






 


kT

F
vv exp0        (2) 



99 

 

 

 

 

where F is the standard free energy of activation, k is the Boltzmann constant, T is the 

absolute temperature and v0 is the velocity when F is zero. The term v0 may contain the 

mean distance the dislocation moves per activation event, a fundamental frequency such as 

kT/h with h being the Planck constant, and a possible geometric factor. On the other hand, v0 

can simply be regarded as the maximum attainable velocity such as shear wave velocity in the 

crystal.  

If a shear stress * is applied in the slip plane so that * does positive work when the 

dislocation moves forward, then the free energy of activation is decreased for forward motion 

and increased for backward motion by *bA*, where b is the Burgers vector of the dislocation 

and A* is the area swept by the dislocation during an activation event (activation area). This 

indicates that external stress may fully activate the dislocation. The stress that can achieve this 

is 

c  which is defined as the friction stress. Let the activation area be 

0A  at *= 0; a 

consideration of the reversible process shows  

 

  






 dAbF

A0

0

0          (3) 

 

Assuming that a relation exists between * and A* during the activation event. Hence at an 

applied stress *, the activation free energy for the forward motion is  

 

 








 


dAbFdAbAbFF

A

A

f

0

00

0

.    (4) 

 

Similarly, the activation free energy for backward motion is  

 

 






 


dAbFFb

0

0        (5) 

 

Equations (2), (4) and (5) give the average velocity of the dislocations [8,9]: 

 

 













 
 



dA
Tk

b

Tk

F
vv c

0

0

.
sinh

.
exp2     (6) 

 

which at small * gives 

 

 






 




kT

F

kT

bA
vv c

00 exp
.

2


      (7) 

 

a linear relation between stress and velocity. At large * the velocity becomes  
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




























kT

dAbF

vv c




0

0

exp
     (8) 

 

A comparison with (2) shows 
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
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


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It is to be noted that Eq. (9) is valid only if the hyperbolic sine function in (6) can be 

approximated by an exponential function. 

 

In the literature the quantity A*b is sometimes called the “activation volume”. To avoid 

confusion with the activation volume defined as the pressure derivative of the standard free 

energy of activation, the term “activation area” is defined by Eq. (9). 

 

Similarly other thermodynamic functions can be derived [6,7]: 

 

The „Activation Enthalpy“: 

 

 

cvvp
T

TAbH

/,

. 














 

      (10) 

 

Activation area of Cd single crystals with various amount of Zn has been measured in wide 

stress and temperature range (1,5 K – 380 K) [10,11]. The values of A* and its temperature 

and stress dependence indicate in the temperature regions ~ 20 K and ~ 200 K changes of 

mechanisms controlling movement of dislocations. 

 

2.2. The velocity - stress relation. 

 

It was undoubtedly established that activation area decreases with increasing stress [12,13]  

When the activation area can be approximated by an inverse proportionality to the stress, a 

velocity – stress relation results: 

 

  nBv            (11) 
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In this equation B and n are independent of stress but may be functions of both temperature 

and pressure. Parameter n can be defined by the equation 

 

 
kT

bAv
n

pT





















 ,ln

ln
      (12) 

 

Equation (12) indicates that temperature dependence n(T) can be similar as A*(T) good 

qualitative criterion of dislocations mechanisms change (the first one is better because n is 

usually stress independent – Figs.6,7,and 8. [13]).. 

 

 

 
 Fig.4. The typical stress dependence of activation area A* at very low temperatures 

                      (Cd+0.0584 at%Zn alloy single crystals deformed at the temperature 

             ◦ - 1.5 K, • - 2,8 K and 4.2 K) 

 

 

 
        Fig.5 .The stress dependence of the activation area A*, calculated by means 
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of the last square method (Cd + 0.0584 at.%Zn, T=77K) 

            —  - The adding of the load increment, ----  the removing of the load increment 

 

 

The velocity stress exponent n for Cd single crystals with various concentration of Zn solute 

atoms had been measured in the wide temperature interval (1,5 K – 380 K). A repeated creep 

experiment was used [11,12] and in every creep step one or more values of n were measured 

according to equation (14): 

 

 

pT

n

,

1

2

ln

ln








































        (13) 

 
Fig.6. The stress dependence of the stress sensitivity parameter n 

 

                            Fig.7.The stress dependence of the stress sensitivity parameter n (Cd +    

           0.0027at.%Zn, T=296K) ◦ - the beginning of the primary creep step, 

  • - the end of the primary creep step. 
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Fig.8.The stress dependence of the stress sensitivity parameter n for two samples of the same    

 concentrations of solute  atoms, (Cd + 0.0027 at.%Zn, T=202K). ◦ - the sample Cd-

Zn 21, • - the sample Cd-Zn 22, ./// the jerky flow (dynamic strain aging)  

 

According to basic equation of plastic deformation (Orowan) we can write  

 

  ..vb


         (14) 

 

( 


  is velocity of deformation and v resp.  is velocity resp. density of movable dislocations. 

We suppose that i  does not change in the course of small change of a, i.e a ~ * and 

const).  

 

As we can see from the Fig.6,7 and 8., the stress dependence of n is approximately constant. 

The temperature dependence of n is for various CdZn alloys shown in the Fig.9.. At that 

figure we can notice two peaks (at the temperature T ~ 12 K and T ~ 200 K).      
 

 
Fig. 9. Temperature dependence of the stress velocity exponent n. 

3. CONCLUSION 

 

According to our experimental results we can conclude, that 

- activation area A* and the velocity stress exponent n can be comparatively easy 

measured in creep deformation, 

- velocity stress exponent n is stress independent,  

- the temperature dependence n = n(T) indicate changes of mechanisms, controlling 

velocity of dislocations (at the temperature interval T ~ 12 K it is quasidynamical 

mechanism [14] and at the temperature interval T ~ 200 K ( ≈ 0,3 Tm ) it is the 

dynamic strain aging region. [12,13] ) 
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Abstract: The purpose of this paper is to provide criteria for a linear discrete system in R3 with
delay to be weakly delayed. Explicit necessary and sufficient conditions are derived.

Keywords: Discrete linear system, weakly delayed system, delay.

1 Weakly Delayed Systems
We use the following notation throughout this paper: For integers s, q, s ≤ q, we define a set
Zq

s := {s, s + 1, . . . , q − 1, q}. Similarly, we define a set Z∞s := {s, s + 1, . . . }. In this paper,
we deal with the discrete systems

x(k + 1) = Ax(k) +Bx(k −m) (1)

where m ≥ 0 are fixed integers, k ∈ Z∞0 , A = (aij) and B = (bij), are constant l × l matrices,
and x : Z∞−m → Rl, l ≥ 2.

In [2], linear weakly delayed systems were defined for planar systems. This definition can be
applied to l-dimensional systems as follows.

Definition 1 System (1) is called weakly delayed if the characteristic equations for (1) and for
the system without delay

x(k + 1) = Ax(k)

have identical roots, that is, if, for every λ ∈ C \ {0},

det
(
A+ λ−mB − λI

)
= det (A− λI) .
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2 Criteria of Weakly Delayed Systems
In [2], the authors derive necessary and sufficient conditions for (1) with l = 2 to be a weakly
delayed system:

Theorem 1 System (1) is a system with weak delay if and only if the following three conditions
hold simultaneously:

b11 + b22 = 0,∣∣∣∣b11 b12
b21 b22

∣∣∣∣ = 0,

∣∣∣∣a11 a12
b21 b22

∣∣∣∣+ ∣∣∣∣b11 b12
a21 a22

∣∣∣∣ = 0.

Moreover, in [4] Theorem 1 is extended to the case l = 3.

Theorem 2 ([4]) Let l = 3 in (1). Then, (1) is a weakly delayed system if and only if conditi-
ons (2)–(7) below hold:

b11 + b22 + b33 = 0, (2)∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣ = 0, (3)

∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ = 0, (4)

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣ = 0, (5)

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = 0, (6)

∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ = 0.

(7)

In the following part of the paper, considering equation (1) with l = 3, we will simplify
conditions (2)–(7) for every possible Jordan canonical form of the matrix A.
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3 Jordan Canonical Forms of A and Criteria for Weakly De-
layed Systems

It is known that, for every matrix A, there exists a nonsingular matrix S transforming it to the
corresponding Jordan matrix form A∗. This means that

A∗ = S−1AS

where A∗ has the following seven possible forms (denoted below as A1, . . . , A7), depending on
the roots of the characteristic equation

det (A− λI) = 0. (8)

Throughout the remaining part of the paper we assume that l = 3 in (1).
If (8) has three real distinct roots λ1, λ2, λ3, then

A1 =

λ1 0 0
0 λ2 0
0 0 λ3

 , (9)

if (8) has one double real root λ1, λ2 = λ3, then

A2 =

λ1 0 0
0 λ2 0
0 0 λ2

 (10)

or

A3 =

λ1 0 0
0 λ2 1
0 0 λ2

 , (11)

in the case of one triple real root λ = λ1,2,3, the following forms are possible

A4 =

λ 0 0
0 λ 0
0 0 λ

 , (12)

A5 =

λ 1 0
0 λ 0
0 0 λ

 , (13)

A6 =

λ 1 0
0 λ 1
0 0 λ

 (14)

and, finally, if one root is real and two roots are complex conjugate, i.e. λ2,3 = p ± iq, with
q 6= 0, then

A7 =

λ 0 0
0 p q
0 −q p

 . (15)

In this part, we will simplify the general conditions (2)–(7) for each of the Jordan forms (9)–
(15).
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3.1 Criterion for Weakly Delayed Systems in the Case (9)

Consider system (1) with the matrix A = A1, i.e.,

x(k + 1) = A1x(k) +Bx(k −m). (16)

In [3] the following result is formulated.

Theorem 3 System (16) is a weakly delayed system if and only if

b11 = b22 = b33 = 0, (17)
b12b23b31 + b13b21b32 = 0, (18)

b12b21 + b13b31 + b23b32 = 0, (19)
λ3b12b21 + λ2b13b31 + λ1b23b32 = 0. (20)

We will show the proof of Theorem 3 as it is not given in [3].

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ1(b22b33 − b23b32) + λ2(b11b33 − b13b31) + λ3(b11b22 − b12b21) = 0

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ3

∣∣∣∣∣∣ =
=λ1(b22b33 − b23b32) + λ2(b11b33 − b13b31) + λ3(b11b22 − b12b21) =
=0.

From (6) we get
λ2λ3b11 + λ1λ3b22 + λ1λ2b33 = 0 (21)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 λ3

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
0 0 λ3

∣∣∣∣∣∣ =
=λ2λ3b11 + λ1λ3b22 + λ1λ2b33 = 0.

From (7) we get
(λ2 + λ3)b11 + (λ1 + λ3)b22 + (λ1 + λ2)b33 = 0 (22)
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since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ3

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ3

∣∣∣∣∣∣ =
=(λ2 + λ3)b11 + (λ1 + λ3)b22 + (λ1 + λ2)b33 = 0.

From (2), (21) and (22) we deduce

b11 + b22 + b33 = 0,
λ2λ3b11 + λ1λ3b22 + λ1λ2b33 = 0,

(λ2 + λ3)b11 + (λ1 + λ3)b22 + (λ1 + λ2)b33 = 0.
(23)

The determinant of the system (23) is different from zero since∣∣∣∣∣∣
1 1 1

λ2λ3 λ1λ3 λ1λ2
(λ2 + λ3) (λ1 + λ3) (λ1 + λ2)

∣∣∣∣∣∣ = λ1λ3(λ1 + λ2)− λ1λ2(λ1 + λ3)−

−λ2λ3(λ1 + λ2) + λ1λ2(λ2 + λ3) + λ2λ2(λ1 + λ3)− λ1λ3(λ2 + λ3) =

= −(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) 6= 0.

Consequently, (23) has only the trivial solution

b11 = b22 = b33 = 0. (24)

Therefore,

B =

 0 b12 b13
b21 0 b23
b31 b32 0

 .

Applying (24) to (3)–(7), after simplification, we get (18)–(20).

Example 1 Assume that A1 = diag(0, 1, 2),

B =

 0 −1 2
−2 0 2
−2 1 0

 .

It is easy to verify that conditions (17)–(20) are valid and system (16) is weakly delayed.
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3.2 Criterion for Weakly Delayed Systems in the Case (10)

Consider system (1) with the matrix A = A2, i.e.,

x(k + 1) = A2x(k) +Bx(k −m). (25)

Theorem 4 System (25) is a weakly delayed system if and only if

b11 = 0, (26)
b22 + b33 = 0, (27)

b12b21 + b13b31 = 0, (28)
b22b33 + b23b32 = 0, (29)

b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 = 0. (30)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ1(b22b33 − b23b32) + λ2(b11b22 + b11b33 − b12b21 − b13b31) = 0 (31)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣ =
=λ1(b22b33 − b23b32) + λ2(b11b33 − b13b31) + λ2(b11b22 − b12b21) =
=λ1(b22b33 − b23b32) + λ2(b11b22 + b11b33 − b12b21 − b13b31) = 0.

From (6) we get
λ22b11 + λ1λ2(b22 + b33) = 0 (32)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
0 0 λ2

∣∣∣∣∣∣ =
=λ1λ2b33 + λ1λ2b22 + λ22b11 = λ22b11 + λ1λ2(b22 + b33) = 0.

From (7) we get
λ1(b22 + b33) + λ2(2b11 + b22 + b33) = 0 (33)
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since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ2 0
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ2 0
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ2

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣ =
=λ1b22 + λ1b33 + λ2b33 + λ2b11 + λ2b11 + λ2b22 =

=λ1(b22 + b33) + λ2(2b11 + b22 + b33) = 0.

From (2) we get b22 + b33 = −b11 and (32) yields

λ22b11 + λ1λ2(b22 + b33) = 0,

λ22b11 + λ1λ2(−b11) = 0,

b11λ2(λ2 − λ1) = 0.

Since λ2 − λ1 6= 0, we get
λ2b11 = 0

Assume λ2 = 0. Then, from (33) we have λ1(b22 + b33) = 0⇒ λ1b11 = 0. Because λ1 6= 0, we
get

b11 = 0. (34)

From (2), using (34), we have
b22 + b33 = 0.

From (31) we get
b22b33 − b23b23 = 0. (35)

Substitute (34) and (35) into (5). We get

b12b21 + b13b31 = 0.

If λ2 6= 0, we get the same conditions (26)–(29). Condition (3) can be simplified to (30).

3.3 Criterion for Weakly Delayed Systems in the Case (11)

Consider system (1) with the matrix A = A3, i.e.,

x(k + 1) = A3x(k) +Bx(k −m). (36)
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Theorem 5 System (36) is a weakly delayed system if and only if

b11 = 0,

b22 + b33 = 0,

b32 = 0,

(λ1 − λ2)b22b33 + b12b31 = 0,

b12b23b31 − b13b22b31 − b12b21b33 = 0. (37)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ1(b22b33 − b23b32) + λ2(b11b22 + b11b33 − b12b21 − b13b31)
− (b11b32 − b12b31) = 0 (38)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 1
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣ =
=λ1(b22b33 − b23b32) + λ2(b11b33 − b13b31)− (b11b32 − b12b31)
+ λ2(b11b22 − b12b21) =

=λ1(b22b33 − b23b32) + λ2(b11b22 + b11b33 − b12b21 − b13b31)
− (b11b32 − b12b31) = 0.

From (6) we get
λ22b11 + λ1λ2(b22 + b33)− λ1b32 = 0 (39)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
0 λ2 1
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ2 1
0 0 λ2

∣∣∣∣∣∣ =
=λ1λ2b33 − λ1b32 + λ1λ2b22 + λ22b11 =

=λ22b11 + λ1λ2(b22 + b33)− λ1b32 = 0.

From (7) we get
λ1(b22 + b33) + λ2(2b11 + b22 + b33)− b32 = 0 (40)

since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ1 0 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ1 0 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ2 1
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ2 1
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ2

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ2

∣∣∣∣∣∣ =
=λ1b22 + λ1b33 + λ2b33 − b32 + λ2b11 + λ2b11 + λ2b22 =

=λ1(b22 + b33) + λ2(2b11 + b22 + b33)− b32 = 0.

From (2) we have b22 + b33 = −b11. Moreover, from (40) we get

λ1(b22 + b33) + λ2(2b11 + b22 + b33)− b32 = 0,

λ1(−b11) + λ2b11 − b32 = 0,

b11(λ2 − λ1)− b32 = 0. (41)

From the last expression, we obtain b32 = b11(λ2 − λ1). Substituting it into (39), we have

λ22b11 + λ1λ2(−b11)− λ1b11(λ2 − λ1) = 0,

b11(λ
2
1 − 2λ1λ2 + λ22) = 0,

b11(λ1 − λ2)2 = 0.

Because (λ1 − λ2)2 6= 0, we derive
b11 = 0. (42)

From (2), utilizing (42), we have
b22 + b33 = 0.

Similarly, from (41), using (42), we obtain

b32 = 0. (43)

Substitute (42) and (43) into (5). We get

−b12b21 − b13b31 + b22b33 = 0⇒ b22b33 = b12b21 + b13b31.

Substituting the last expression into (38) we get

λ1(b22b33) + λ2(−b12b21 − b13b31) + b12b31 = 0,

λ1(b22b33) + λ2(−b22b33) + b12b31 = 0,

(λ1 − λ2)b22b33 + b12b31 = 0.

Condition (3) can easily be simplified to (37).
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3.4 Criterion for Weakly Delayed Systems in the Case (12)

Consider system (1) with the matrix A = A4, i.e.,

x(k + 1) = A4x(k) +Bx(k −m). (44)

Theorem 6 System (44) is a weakly delayed system if and only if

b11 + b22 + b33 = 0,

b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32 = 0,

b11b22b33 + b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 − b11b23b32 = 0. (45)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ(b11b22 + b11b33 + b22b33 − b12b21 − b23b32 − b13b31) = 0 (46)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λ(b22b33 − b23b32) + λ(b11b33 − b13b31) + λ(b11b22 − b12b21) =
=λ(b11b22 + b11b33 + b22b33 − b12b21 − b23b32 − b13b31) = 0.

From (6) we get
λ2(b11 + b22 + b33) = 0 (47)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
0 λ 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 0 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 0
0 0 λ

∣∣∣∣∣∣ =
=λ2b33 + λ2b22 + λ2b11 = λ2(b11 + b22 + b33) = 0.

From (7) we get
2λ(b11 + b22 + b33) = 0 (48)

since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 0 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ 0
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ 0
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λb22 + λb33 + λb33 + λb11 + λb11 + λb22 =

=2λ(b11 + b22 + b33) = 0.

It is easy to see that (47) as well as (48) are valid because (2) holds, (46) is valid because (5)
holds. Condition (45) is equivalent to (3).

3.5 Criterion for Weakly Delayed Systems in the Case (13)

Consider system (1) with the matrix A = A5, i.e.,

x(k + 1) = A5x(k) +Bx(k −m). (49)

Theorem 7 System (49) is a weakly delayed system if and only if

b11 + b22 + b33 = 0,

b21 = 0,

b23b31 = 0,

b11b22 + b11b33 + b22b33 − b13b31 − b23b32 = 0, (50)
b11b22b33 − b13b22b31 − b11b23b32 = 0. (51)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ(b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32)
− (b21b33 − b23b31) = 0 (52)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λ(b22b33 − b23b32)− (b21b33 − b23b31) + λ(b11b33 − b13b31)
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+ λ(b11b22 − b12b21) =
=λ(b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32)
− (b21b33 − b23b31) = 0.

From (6) we get
λ2(b11 + b22 + b33)− λb21 = 0 (53)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
0 λ 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 1 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 0
0 0 λ

∣∣∣∣∣∣ =
=λ2b33 + λ2b22 − λb21 + λ2b11 = λ2(b11 + b22 + b33)− λb21 = 0.

From (7) we get
2λ(b11 + b22 + b33)− b21 = 0 (54)

since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 1 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ 0
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ 0
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λb22 − b21 + λb33 + λb33 + λb11 + λb11 + λb22 =

=2λ(b11 + b22 + b33)− b21 = 0.

If (2) holds, we get
b21 = 0. (55)

Moreover, (53) holds because of (54). From (5) and (55), then, (52) yields

b23b31 = 0.

Equation (5) can be simplified to (50). Condition (51) can be obtained from (3) using the
equation derived above.
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3.6 Criterion for Weakly Delayed Systems in the Case (14)

Consider system (1) with the matrix A = A6, i.e.,

x(k + 1) = A6x(k) +Bx(k −m). (56)

Theorem 8 System (56) is a weakly delayed system if and only if

b11 + b22 + b33 = 0,

b21 + b32 = 0,

b31 = 0,

b21b33 + b11b32 = 0, (57)
b11b22 + b11b33 + b22b33 − b12b21 − b23b32 = 0, (58)

b11b22b33 + b13b21b32 − b12b21b33 − b11b23b32 = 0. (59)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ(b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32)
− (b11b32 + b21b33 − b12b31 − b23b31) = 0 (60)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 1
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λ(b22b33 − b23b32)− (b21b33 − b23b31) + λ(b11b33 − b13b31)
− (b11b32 − b12b31) + λ(b11b22 − b12b21) =

=λ(b11b22 + b11b33 + b22b33 − b12b21 − b13b31 − b23b32)
− (b11b32 + b21b33 − b12b31 − b23b31) = 0.

From (6) we get
λ2(b11 + b22 + b33)− λ(b21 + b32) + b31 = 0 (61)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
0 λ 1
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 1 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 λ 1
0 0 λ

∣∣∣∣∣∣ =
=λ2b33 − λb32 + b31 + λ2b22 − λb21 + λ2b11
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=λ2(b11 + b22 + b33)− λ(b21 + b21) + b31 = 0.

From (7) we get
2λ(b11 + b22 + b33)− (b21 + b32) = 0 (62)

since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 1 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 1 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 λ 1
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
0 λ 1
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 0 λ

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 0 λ

∣∣∣∣∣∣ =
=λb22 − b21 + λb33 + λb33 − b32 + λb11 + λb11 + λb22 =

=2λ(b11 + b22 + b33)− (b21 + b32) = 0.

If (2) holds, we get
b21 + b32 = 0 (63)

from (62). Moreover, from (61) we get
b31 = 0 (64)

using (2) and (63). From (5) and (64), then, (60) yields (57). Equation (5) can be simplified
to (58), equation (3) can be simplified to (59).

3.7 Criterion for Weakly Delayed Systems in the Case (15)

Consider system (1) with the matrix A = A6, i.e.,

x(k + 1) = A7x(k) +Bx(k −m). (65)

Theorem 9 System (65) is a weakly delayed system if and only if

b11 = 0,

b22 + b33 = 0,

b23 − b32 = 0,

b22b33 − b12b21 − b13b31 − b23b32 = 0,

(λ− p)(b12b21 + b13b31) + q(b12b31 − b13b21) = 0,

b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 = 0. (66)
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Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

λ(b22b33 − b23b32) + p(b11b22 + b11b33 − b12b21 − b13b31)
+ q(b11b23 + b12b31 − b11b32 − b13b21) = 0 (67)

because ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 p q
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
0 −q p

∣∣∣∣∣∣ =
=λ(b22b33 − b23b32) + p(b11b33 − b13b31)− q(b11b32 − b12b31)
+ q(b11b23 − b13b21) + p(b11b22 − b12b21) =

=λ(b22b33 − b23b32) + p(b11b22 + b11b33 − b12b21 − b13b31)
+ q(b11b23 + b12b31 − b11b32 − b13b21) = 0.

From (6) we get
λ(p(b22 + b33) + q(b23 − b32)) + b11(p

2 + q2) = 0 (68)

since ∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
0 p q
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 0 0
b21 b22 b23
0 −q p

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 p q
0 −q p

∣∣∣∣∣∣ =
=λ(pb33 − qb32) + λ(pb22 + qb23) + b11(p

2 + q2) =

=λ(p(b22 + b33) + q(b23 − b32)) + b11(p
2 + q2) = 0

From (7) we get

λ(b22 + b33) + p(2b11 + b22 + b33) + q(b23 − b32) = 0 (69)

since ∣∣∣∣∣∣
a11 a12 a13
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
a21 a22 a23
b31 b32 b33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
λ 0 0
b21 b22 b23
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
λ 0 0
0 1 0
b31 b32 b33

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
0 p q
b31 b32 b33

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
b11 b12 b13
0 p q
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
0 1 0
0 −q p

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 0 0
b21 b22 b23
0 −q p

∣∣∣∣∣∣ =
=λb22 + λb33 + pb33 − qb32 + pb11 + pb11 + pb22 + qb23 =

=λ(b22 + b33) + p(2b11 + b22 + b33) + q(b23 − b32) = 0.

From (2), we have b22 + b33 = −b11. Expression (69) yields

λ(b22 + b33) + p(2b11 + b22 + b33) + q(b23 − b32) = 0,

λ(−b11) + pb11 − q(b23 − b32) = 0,

−b11(λ− p)− q(b23 − b32) = 0.

From the last expression we have q(b23 − b32) = (λ− p)b11. A substitution into (68) yields

λ(p(b22 + b33) + q(b23 − b32)) + b11(p
2 + q2) = 0,

λp(−b11) + λb11(λ− p) + b11(p
2 + q2) = 0,

b11(λ
2 − 2λp+ p2 + q2) = 0,

b11((λ− p)2 + q2)2 = 0.

Since ((λ− p)2 + q2)2 6= 0, we get
b11 = 0. (70)

From (2), utilizing (70), we derive
b22 + b33 = 0. (71)

Substituting (70) and (71) into (68), we have

b23 − b32 = 0.

Simplifying (5) leads to

(b11b22 − b12b21) + (b11b33 − b13b31) + (b22b33 − b23b32) = 0,

−b12b21 − b13b31 + b22b33 − b23b32 = 0.

Then, from the last expression, we get

b22b33 − b23b32 = b12b21 + b13b31.

Substituting it together with (70) into (67), we obtain

λ(b12b21 + b13b31) + p(−b12b21 − b13b31) + q(b12b31 − b13b21) = 0,

(b12b21 + b13b31)(λ− p) + q(b12b31 − b13b21) = 0.

Condition (3) can be simplified to (66).

4 Conclusion
Weakly delayed three-dimensional systems of linear discrete equations with constant coeffici-
ents and constant delays were considered and criteria for systems (1), with l = 3, to be weakly
delayed were derived. It is an open question how to derive criteria for systems with several
delays. For further results related to weakly delayed systems, we refer, e.g., to [1, 5, 6]
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[6] DIBLÍK J., HALFAROVÁ H.: General explicit solution of planar weakly dela-
yed linear discrete systems and pasting its solutions. Abstr. Appl. Anal. 2014,
doi:10.1155/2014/627295, 1–37.

121



122 

 

INTERVAL STABILITY OF NONLINEAR CONTROL SYSTEMS 

WITH AFTEREFFECT 
 

Andriy Shatyrko 

Taras Shevchenko National University of Kyiv, 

Cybernetics faculty, Department of complex systems modelling  

Volodymyrska str., 64, Kyiv, Ukraine, 01601  

shatyrko.a@gmail.com 

 

Abstract: Sufficient conditions of interval absolute stability of nonlinear control systems 

described in terms of systems of the ordinary differential equations with delay argument, and 

also neutral type are obtained. The Lyapunov-Krasovskii functional method in the form of the 

sum of a quadratic component and integrals from nonlinearity is used at construction of 

statements. 

 

Keywords: stability, Lyapunov’s method, deviating argument, nonlinear control systems. 

 

 

INTRODUCTION 

 

The actuality of absolute interval stability problem of the dynamical systems, mentioned in 

the present paper, proves to be true as a lot of interesting reports at the international 

congresses and conferences, and set of foreign publications, for example [1-6].  

 

Problems of research of dynamical systems with it is inexact in the set parameters, or 

moreover, with vectors of speeds (the right-hand side of systems of the differential equations), 

accepting the values from some sets, interested researchers for a long time. Classical 

(Lyapunov) stability means investigation of solutions at indignations by the initial data [7]. Its 

various generalizations (uniform on time and phase variables, by parts variables, 

asymptotical, exponential, orbital etc.) also meant the unequivocal set of the law of dynamics 

of systems. 

 

The solution of practical problems of control theory has caused occurrence concept “robust” 

(or interval) stability. Originally under robust stability it was understood asymptotical stability 

of the linear stationary differential equations of the higher order, under condition of a finding 

of their coefficients in the set intervals some beforehand. Interesting fundamental necessary 

and sufficient conditions of interval stability of the linear differential equations with it is 

inexact in the set parameters have been obtained at papers of Kharitonov V.L. [8-11]. 

However, at distribution of the obtained results to the dynamical systems, on differences 

equations and systems of the equations, systems with aftereffect, have arisen essential 

difficulties.  

 

The solution of control problems in linear systems leads to a finding of function (scalar 

function) ),(xu  at which feedback system 

))(()()( txbutAxtx 


 

should be asymptotical stable. Often this function depends on one scalar argument 

representing a linear combination of phase co-ordinates, and some scalar function from the 

first and third squares of a plane. Investigations of asymptotical stability of the systems 
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   ,)()( tftxu    ),()( txct T  

i.e. systems 

.0),()()),(()()( 


ttxcttbftAxtx T  

with function ),(f  lying in the set sector, became known as the absolute stability 

investigations of regulating (or control) systems. 

 

Problems of control systems absolute stability have arisen in the middle of last century and 

are connected with problems of stabilization of programmed control at the set structure of 

control function [12,13,6]. The results giving absolute stability conditions, i.e. stability as a 

whole the zero solution for the set class of nonlinearity have been obtained in two directions. 

 

One approach of investigations here is, so-called “frequency method”, had development in 

Yakubovich V.A., Gelig A.H., Leonov G.A. works [14-17]. At the heart of a method is a 

study of behavior of some curve  (“godograph”) lies in complex area. 

 

Other, alternative approach which has had development in works by Barbashin E.A., 

Martynyuk A.A., and other, is the Lyapunov second (direct) method with function type of 

“quadratic form plus integral from nonlinearity” [18-21].  

 

Distribution of this method on systems with delay and neutral type has obtained in 

Khusainov D.Ya. and Shatyrko A.V. works [22-25]. Sufficient conditions of absolute interval 

stability have been constructed. At their construction the finite-dimensional method of 

Lyapunov's functions with a condition of Razumikhin B.S. [26] was used. The condition of 

Razumikhin B.S. facilitates construction of Lyapunov function. By means of this approach it 

is possible to estimate influence of aftereffect, i.e. to obtain the conditions of absolute interval 

stability depending from delay. However, the conditions of  Razumikhin B.S. imposes rigid 

enough restrictions on aftereffect. And their use not always is effective.  

 

At this paper we will use an alternative method of Lyapunov-Krasovskii functionals 

[6,11,27,28]. As the functionals the most effective are the integrated additives of a quadratic 

type. At this approach the obtained estimations become simpler. However, here as a point of 

phase space all piece of a trajectory is considered, therefore the approach does not allow to 

estimate influence of delay on absolute stability. Besides, the total derivative represents the 

quadratic form from phase co-ordinate and its prehistory. Therefore the matrix of the 

quadratic form of a total derivative has twice the big dimension.  

 

1. DIRECT CONTROL SYSTEMS WITH TIME-DELAY ARGUMENT 

 

At this section we will consider the system of direct control described by the differential 

equations with interval coefficients and with delay argument of next type 
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Elements of matrices A   and  B   also accept values from the fixed intervals  
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Nonlinear function )(f  satisfies to a “sector condition” 

                                          .)(0 2 kf                                                                    (3) 

Definition. The system (1) is called absolutely interval stable if it is absolutely stable for 

arbitrary matrices A  and B  from intervals (2).  

 

Under absolute system stability we understand absolute stability of it trivial solution in sense 

of classical definitions [12,13].   

 

At Khusainov D.Ya. and Shatyrko A.V. earlier papers conditions of interval stability of 

systems (1) with using of finite-dimensional Lyapunov's functions  
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have been obtained [22-25]. 

 

At the present paper we will construct conditions of interval stability of system (1) with the 

help of Lyapunov-Krasovskii functional     

     



0 )(

0

,)()()()()()]([





t

TT dfdsstGxstxtHxtxtxV   ).()( txct T                (4) 

We will use the following notations: 

)(min  , )(max   - accordingly the minimum and maximum own numbers of a matrix, 

  -the Euclidean norm,  
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 - zero-vector; - zero-matrix. 

Let's preliminary consider system with delay without “interval perturbations” 
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Theorem 1. Let is exists the positive definite matrices G , H  and parameter 0  at which 

the matrix 
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is positive definite too. Then the system with delay without  interval perturbations is 

absolutely stable.  

 

Proof. As function )(f  satisfies to a condition (3), then for functional (4) following bilateral 

estimations are true 
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 We will calculate a total derivative of functional along system solutions. We will obtain  
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Or, using so-called S-procedure [16], 
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If matrix   ,,HGS   is positive definite, than 
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min tftxtxHGStxV
dt

d
  . 

Thus, on the basis of Krasovskii weak theorem [28] if there are positive definite matricesG , 

H  and  ,,HGS  , at which  
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then the system with delay (5) is absolutely stable. 

Further we will obtain conditions of absolute interval stability of system (1). 

 

Theorem 2. Let are exists the positive definite matrices G , H  and parameter 0 , at which 

the inequality is true 
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1
,, cAHBHAHAHGS                     (8) 

Then the system (1) is absolutely interval stable.  

 

Proof. As appears from a type of functional (4), for it bilateral estimations (7) are fair. We 

will calculate a total derivative of functional along solutions of system with “interval 

perturbations”. We obtain 
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If matrix  ],,[ HGS  is positive definite, 
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From here we have 
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Let's break the first composed on two one and we will present the right part of an inequality in 

the form of the next sum 
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where 10  - some constant. Then, as appears from Sylvester’s criterion, performance of 

inequalities will be a condition of absolute interval stability of system with delay 
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Let the A  such that the first inequality is executed. We will copy the second and third 

inequalities in a type 
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And, if the inequality is true 
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than always exists 10  , at which the second and third inequalities (9) are true. And last 

inequality is equivalent to the following 
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Let's copy it in a type 
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It will be always true, if  
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As from performance of last inequality performance of the first inequality (9) it is similar to 

the theorem 1, we obtain the statement (8) of  theorem 2. 

 

2. DIRECT CONTROL SYSTEMS OF NEUTRAL TYPE 
 

We will consider the direct control system described by the differential equations with 

deviating argument of neutral type and with interval given coefficients of linear part 
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Here a matrix D  satisfies to a condition “difference operator stability”, i.e. 1D , matrices 

A  and B  also can accept the values from the fixed intervals (2). Nonlinear scalar function 

of one argument )(f  lies in the set sector of the first and third quarter of coordinates plane 

(3). 

 

In the present section for construction of absolute interval stability conditions we will use the 

functional of Lyapunov-Krasovskii of a following type  
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Let's preliminary consider system without interval perturbations 
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Also we will obtain absolute stability conditions of system (12). 
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Theorem 3. Let there exists positive definite matrices ,, HG  and parameter 0 , at which 

the matrix ],,[ HGS  also is positive definite. Then the system without interval perturbations 

(12) is absolutely stable in the metrics .)(
2

tx  

 

Proof. For Lyapunov-Krasovskii fnctional (11) following bilateral estimations are true  
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We will calculate a total derivative of functional (11) owing to system without interval 

perturbations. We obtain the following 
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where matrix  ,,HGS  is defined in (13). If it is positive definite, then 
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Thus we have system of inequalities 
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Further we will obtain absolute interval stability conditions of system (10). 

 

Theorem 4. Let there exists positive definite matrices G , H  and parameter 0 , at which 

the next inequality is true 
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Proof. As appears from a type of functional (11), for it bilateral estimations (14) are true. We 

will calculate a total derivative of functional along solution of system with “interval 

perturbations”. We obtain 
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if  ,,HGS  is positive definite, then 
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Then, as appears from Sylvester’s criterion [29], performance of system of inequalities will be 

a condition of absolute interval stability 
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Let's copy the second inequality in a type 
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It will be true especially if there will be positive definite matrices HG,  and parameter  

,0  at which 
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From here the statement of the theorem 4 follows. 

 

From the theorem 4 directly the consequence which is easier realized for check of conditions 

of interval stability follows. 

 

Consequence. Let there exists positive definite matrices G , H  and parameter 0 , at 

which the inequality is true 

     BA
H

HGS

)(

,,

max

min



    22
DABDBA  . 

Then system (10)  is absolute interval stable in the metrics 
2

)(tx . 

 

CONCLUSION AND PROSPECTS 

 

In the paper for the nonlinear systems of automatic control described in terms of the ordinary 

differential equations with delay and neutral type, and also having uncertainties in the set of 

linear parts, are received constructive algebraic criteria of interval absolute stability. At the 

expense of application of the alternative approach of Lyapunov-Krasovskii functional, form 

of estimations in sufficient conditions of interval stability are essentially simplified in 

comparison with obtained analogous one on the basis finite-dimensional Lyapunov's functions 

of Lur’e-Postnikov types [22,23,31,32]. 

 

In the chosen approach that results can be extended further on, a so-called, critical case 

(indirect control system) is perspective. Besides, applying the specified approach, similar 

results for the discrete systems are obtained [33,34]. It studying is actual enough recently. 

Also from the point of view of authors interest in the future represents construction of 

Lyapunov functions and Lyapunov-Krasovskii functionals, which are optimal in the classes 

by the set criteria of quality, for example [35]. 

 

It should also be noted next fact, if conditions of the Theorems 1-4 could not fulfill, it’s not a 

dead-end situation. In such case, you can go for example to the solving the stabilization 

problem to a state of absolute stability [36,37]. 

 

All this confirms the viability and prospects of Lyapunov’s direct method in the qualitative 

analysis of complex dynamical systems.  
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Abstract: This report considered the dynamics of a neural network model that describes a 

system of differential equations and for study the stability using the method of Lyapunov 

functions with an additional condition Razumikhina. In rating the total derivative captured 

outside the diagonal elements. 

 

Keywords: differential equations, Lipschitz condition, neural network, asymptotically stable 

 

INTRODUCTION 

 

Mathematical models of the dynamics of neural networks described by nonlinear differential 

levels, with a dedicated asymptotic stable diagonal part reviewed in [1]. A more adequate 

model is system with delay.. It was designated in [2,3]. Apparatus of research such systems 

was chosen method of Lyapunov-Krasovskii functionals [2] and the method of comparison 

[3]. For research stability we using the method of Lyapunov functions with an additional 

condition Razumikhina [4,5] 

 

1. MODEL OF THE PLANE. SYSTEM WITHOUT DELAY 

 

We consider the following model of the dynamics of a neural network, described by a system 

of differential equations:        

         
12121111111

btyftyftyaty  , 

         
22221212222

btyftyftyaty  .                  (1.1) 

Where 0
11
a , 0

22
a  – constants,  yf

ij
, 2,1, ji  - continuous functions, satisfy 

the condition Lipschitz 

    
ijijij

Lyfyyf , 2,1, ji . 

expected that the system of equations 

    0
1212111111
 byfyfya ,     0

2222121222
 byfyfya . (1.2) 

 

It has a unique solution point  0

2

0

10
, yyM , 00

1
y , 00

2
y . After replacement 

    0

111
ytxty  ,     0

222
ytxty   we obtain: 

         txFtxFtxatx
2121111111

 ,          txFtxFtxatx
2221212222

 ,  (1.3) 

       0

111

0

1111111
yfytxftxF  ,        0

212

0

2212112
yfytxftxF  , 

       0

121

0

1121121
yfytxftxF  ,        0

222

0

2222122
yfytxftxF  .         (1.4) 

 

We have the following conditions for asymptotic stability. 
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Theorem 1.1. Let the system of equations (1.2) has a unique solution  0

2

0

10
, yyM , 00

1
y , 

00

2
y  and exist constants 0

11
h , 0

22
h  in which the following conditions is performed                                                                                                                      

  0
111111
 hLa ,      04

2

22211112221122221111
 hLhLhhLaLa .         (1.5) 

Then the equilibrium state  0

2

0

10
, yyM  is asymptotically stable. 

 

Proof. For research stability of the equilibrium  0

2

0

10
, yyM  use the quadratic Lyapunov 

function of the form   2

222

2

11121
, xhxhxxV  . 

 

Its total derivative according to the system (1.4) has the form  

                txFtxFtxatxhtxtxV
dt

d
21211111111121

2, ( ) ( ) ( )( ) ( )( )[ ]txFtxFtxatxh
222121122122

++-2 . 

Or ( ) ( )( )txtxV
dt

d
21

,               txFtxFtxhtxhatxha
212111111

2

22222

2

11111
22  

        txFtxFtxh
222121222

2  . 

Using the Lipschitz condition, we obtain  

    txtxV
dt

d
21

,             txLtxLtxhtxhatxha
212111111

2

22222

2

11111
22  

      txLtxLtxh
222121222

2  . 

We rewrite the expression whitch obtained in the form  

( ) ( )( )≤,
21

txtxV
dt

d
              txhLatxtxhLhLtxhLa 2

22222222122211112

2

1111111
2   

 

As the criterion of Sylvester [6], the condition of the total derivative is negative definite is 

implementation of inequalities  

  0
111111
 hLa ,      0

4

1 2

22211112221122221111
 hLhLhhLaLa , 

i.e get the conditions (1.5). 

 

2. MODEL IN THE PLANE. SYSTEM WITH DELAY 

 

Let's consider the system on the plane with delay 

         
112212111111111

btyftyftyaty   , 

         
222222211212222

btyftyftyaty   .                  (2.1) 

 

We suppose that 0
ij
 , 2,1, ji , 0

11
a , 0

22
a  and function  yf

ij
, 2,1, ji  

are continuous and satisfy a Lipschitz condition. Let make a replacement     0

111
ytxty  , 

    0

222
ytxty   and the system (2.1) reduces to the form  

         
12212111111111
  txFtxFtxatx , 

         
22222211212222

  txFtxFtxatx .               (2.2) 

 

And the research of the stability of the equilibrium position  0

2

0

10
, yyM  has been reduced to 

the research of the stability of the zero equilibrium state of the system (2.2). We get the 

following conditions for asymptotic stability. 
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Theorem 2.1. Let the system of equations (2.2) has a unique solution  0

2

0

10
, yyM  and there 

exist constants 0
11
h , 0

22
h  in which the following conditions performed 

02
11

22

11

121111









 h

h

h
LLa , 










22

11

121111
4

h

h
LLa 










221122

11

22

2122
hhL

h

h
La  

                                         0

2

22

22

11

22211112

11

22

11









































 h

h

h
LLhL

h

h
L .            (2.3) 

Then the equilibrium state  0

2

0

10
, yyM  is asymptotically stable. 

 

Proof. for the research of sustainability we will use the quadratic Lyapunov function 

  2

2

2

22

2

11121
, xhxhxxV  . For calculating the total derivative of the Lyapunov function by 

virtue of system (2.2) we will use B.S.Razumihina condition [4,5]. For the Lyapunov function 

  2

2

2

22

2

11121
, xhxhxxV   it has the form 

         sxsxVsxhsxh
21

2

2

2

22

2

111
,         txhtxhtxtxV 2

222

2

11121
,  , ts  .  (2.4) 

 

It follows that  

     tx
h

h
txsx 2

2

11

222

11
 ,       txtx

h

h
sx 2

2

2

1

22

11

2
 , ts  .           (2.5) 

 

The total derivative of the Lyapunov function by virtue of system (2.2) has the form  

( ) ( )( )txtxV
dt

d
21

,           
1221211111111111

2  txFtxFtxatxh  

          
2222221121222222

2   txFtxFtxatxh . 

 

Using the Lipschitz condition, we obtain  

( ) ( )( )txtxV
dt

d
21

,            
1221211111111

2

22222

2

11111
22  txLtxLtxhtxhatxha  

      
2222221121222

2   txLtxLtxh . 

When we open the brackets we will get 

( ) ( )( )txtxV
dt

d
21

,              
1221211111111111

2

22222

2

11111
222  txLtxhtxLtxhtxhatxha  

       
2222222221121222

22   txLtxhtxLtxh . 

 

It is known that for arbitrary 0A  and 0B  following inequality holds  

BABA  22 .                                            (2.6) 

 

Using the conditions BS Razumihina (2.5) and inequality (2.6), we obtain  

   stx
1      tx

h

h
tx 2

2

11

222

1
   tx

h

h
tx

2

11

22

1
 , 

       txtx
h

h
stx 2

2

2

1

22

11

2
   txtx

h

h
21

22

11  .                      (2.7) 

It follows that  
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( ) ( )( )txtxV
dt

d
21

,      txhatxha 2

22222

2

11111
2       








 tx

h

h
txtxhL

2

11

22

111111
2  

      







 txtx

h

h
txhL

21

22

11

11112
2       








 tx

h

h
txtxhL

2

11

22

122121
2 ( ) ( ) ( )]+[2

21

22

11

22222
txtx

h

h
txhL . 

Or  

    txtxV
dt

d
21

,   







 txh

h

h
LLa 2

111

22

11

121111
2  

    







































 txtxh

h

h
LLhL

h

h
L

2122

22

11

22211112

11

22

11
2 ( )txhL

h

h
La 2

12222

11

22

2122
]--[2 . 

 

And, as the criterion of Sylvester [6], the condition of asymptotic stability will be the 

implementation of the system of inequalities 
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i.e we get implementation of conditions (2.3). 

 

 

3. SYSTEMS IN N-DIMENSIONAL SPACE 
 

The most common case is the system delay in the n-dimensional space. The system has the 

form 
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j
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1
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We rewrite it as  
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And the research of the stability of the equilibrium position  00

2

0

10
,...,,

n
yyyM  has been 

reduced to the research of the stability of the zero equilibrium state of the system (3.3). We 
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There have been the following conditions of stability 
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Then the equilibrium state  00
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n
yyyM  is asymptotically stable 

 

Proof. For research stability of the equilibrium  00
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yyyM  w will use the Lyapunov 

function  
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For calculating the total derivative of the Lyapunov function by virtue of the system (3.9) we 

will use B.S.Razumihina condition [4,5]. For the Lyapunov function (3.9) it has the form  
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The total derivative of the Lyapunov function (3.9) by virtue of the system (3.3) has the form  
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Using the Lipschitz condition, we obtain  
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Let's consider the second summand. Using B.S.Razumihina conditions (3.11) and inequality 

(2.6), we obtain  
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We introduce the following notation  
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Rearranging the quadratic terms, we obtain  
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We transform this expression the following way  
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Let's introduce the following notation  
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Then, for a total derivative of the Lyapunov function due to a delay system (3.3) will have the 

inequality  
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And the condition of stability is a positive definite of the matrix C. As the Sylvester criterion, 

it is necessary and sufficient that all principal diagonal minors were positive, i.e, the 

conditions of Theorem 3.1. ned to be performed. 

 

We can show that in the particular case of n-terms of the asymptotic stability of (3.8) coincide 

with the conditions of stability (2.3) in the plane. 
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Abstract: The authors of the paper deal with the application of mathematical and statistical 

methods and Design of Experiments (DOE) in order to identify and analyse factors affecting 

the process of electrolytic alkaline zinc plating at a current density of 0.5 A.dm -2. Based on 

the DOE methodology according to the central composite design, the set of experiments 

containing 40 runs has been performed. The influence of seven input factors on the final 

thickness of formed zinc layer has been investigated. In this paper, the mathematical-

statistical model predicting the thickness of the formed layer is presented. In order to save 

time, as the possibility of increasing the efficiency of the technological process, non-linear 

programming was used to optimize the zincing process. 

 

Keywords: design of experiments (DOE), mathematical – statistical model, electrolytic 

alkaline zinc plating, significant factors, optimization. 

 

 

INTRODUCTION 

 

Technological processes of surface treatment belong to multifactorial systems, present 

complex non-linear processes actuating several technological, physical, chemical and material 

effects and their mutual interactions. That is why the analysis of these processes by classic 

methods appears to be non-efficient and many times leads to incorrect conclusions. At the 

process analysis, observation, examination, comparison and synthesis (optimization and 

forecasting), we find the basis in determination of bonds and relations between input and 

output parameters. It is significant to identify if certain factors (input parameters) have an 

influence on observed parameter (response). Then it is necessary to find such levels of factors 

in order to reach the optimum (maximum, minimum) of the observed parameter [1], [2]. To 

solve such practical problems it is more suitable to use experimental and statistic approach 

than determination approach. The analysis and synthesis in conditions of incomplete 

information is carried out at experimental and statistic approach of process analysis of surface 

adjustments. Even though the nature of examined process is not completely known, 

incomplete information for setting optimal conditions is updated by the experiment and 

known data. Wide use of various experimental methods is the consequence of incomplete 
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information and continual improvement of old and creation of new objects, processes and 

procedures [3]. 

 

The process of electrolytic alkaline zinc plating, where at the right choice of technological 

factors it is possible to create such a protective layer of material that will have requested 

thickness and properties and it will fulfil defined criteria (e.g. resistance against corrosion), 

also belongs to multifactorial and non-linear systems. Identification and analysis of the factors 

functioning in this process and observing their influence on created layer became the object of 

our scientific research and experimental work [4], [5], [6] and it is also solved in the paper. In 

contrast to majority of scientific and expert works on the problem [7], [8], [9], [10], where the 

selected parameter of created layer in relation to only one factor is analysed, the paper focuses 

on deeper and more complex identification of influences of several factors and their 

interactions functioning in the process of electrolytic alkaline zinc plating, which did not go 

without the use of Design of Experiments (DOE). In contrast to COST approach Design of 

Experiments (DOE) enables us to observe in given time common influence of several factors 

on the response and find optimal combination of setting the values of input process 

parameters. The change of only one selected factor in given time is considered at COST 

approach within the frame of experimental work (COST is an acronym of English expression 

“consider one separate factor at a time“), which is inefficient approach, because it does not 

provide necessary information in order to reach real optimum,  experimental work is 

overpriced. 

 

1.  EXPERIMENTAL PART 

 

S355J0 material was used to carry out the experiment. Within the frame of individual 

experiments above mentioned method of electrolytic alkaline zinc plating at current density of 

0.5 A.dm-2 was used. Zinc electrolyte was used, which is characteristic of its high depth 

efficiency, low zinc concentration and high coating ability. Zinc is currently an available 

option at the protection of metals from corrosion and creating special properties of material 

surface. Zinc anodes are placed into a separate dissolution bath, where it is possible to 

regulate the zinc content by sinking and lifting of anodes. Zinc is brought into the coating bath 

through filter by the circulation circuit. During alkaline coating it was necessary to secure the 

components of glitter additives in requested concentration in the electrolyte. Zink plating of 

samples was based on DOE with selected central composite plan with 40 individual 

experiments. We were interested in the influence of 7 input factors functioning on thickness 

of created zinc layer, i.e. functional dependency  7654321 ,,,,,,ˆ xxxxxxxfy  , where 1x  – is 

the amount of NaOH in the electrolyte, 2x  – is the amount of ZnO in the electrolyte, 3x  – the 

amount of glitter additive Pragogal Zn3401 in the electrolyte, 4x  – the amount of glitter 

additive Pragogal Zn3402 in the electrolyte, 5x  – electrolyte temperature, 6x  – time of zinc 

plating, 7x – voltage. Experimental conditions and individual levels of individual variables 

(factors) can be found in Table 1. The thickness of layer coating using the digital thickness 

meter MINITEST 4000 was measured at individual samples in selected experimental points. 

Experimentally obtained data presented an input matrix for the further statistic processing. 

 

Design of Experiments, which was used to identify significant factors influencing the 

thickness of created layer, enabled us to obtain maximum amount of information with high 

statistic and numeric precision at optimal number of individual experiments [2]. 
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Coded 

factor 
Factor Unit 

Factor level in planned experiment 

-2,21 -1 0 1 2,21 

1x   NaOHm   1lg   19.33 80.00 120.00 180.00 240.67 

2x   ZnOm   1lg   3.15 8.00 12.00 16,00 20.85 

3x   3401Znm   1lml   2.18 4.00 5.50 7.00 8.82 

4x   3402Znm   1lml   0.68 2.50 4.00 5.50 7.32 

5x  T   °C  -0.13 12.00 22.00 32.00 44.13 

6x  t   min  1.15 6.00 10.00 14.00 18.85 

7x  U   V  0.79 2.00 3.00 4.00 5.21 

Table 1. Indication and values of technological factors 

 

Individual experiments were carried out on the basis of created matrix of experimental plan as 

a combination of individual levels of 7 input factors in accordance with Table 1, in which 

experimental conditions can be found. Individual experiments were carried out in random 

order. This randomisation is needed because of minimizing systematic errors or preventing 

subjective preferring of some of the input factor levels. Orthogonality of experimental plan 

was verified by means of the scalar products, i.e. all matrix columns of experimental plan 

must be perpendicular to each other and non-zero in order to avoid the wrong indication of 

statistic non-significance of regressors [6]. Well known transpose relation [6], due to which 

original physical units can be transposed to non-dimensional form, was used to norm (code) 

the basic factors. 

 

2.  RESULTS AND DISCUSSION 

 

Exploring analysis, screening analysis, dispersion analysis and DoE analysis were carried out 

based on statistical analysis of experimentally obtained data. By using software products such 

as Matlab, Statistica, JMP or QC - Expert we recognized significant factors that have 

influence on the final thickness of AAO layer, analysed their interactions and obtained the 

shape and coefficients of mathematical and statistic models that predict the thickness of 

created layer at changing factor levels. Data analysis was carried out with statistically correct 

approach involving the analysis of basic conditions and following analysis of the classic 

regression triplet: data, model, residuals. That is why it can be said there was no numeric and 

statistic incorrectness of the results when deducing and interpreting the results, which was 

also confirmed by practical experiences in the area of surface treatment. 

 

Basic analysis of obtained results of measuring thickness of created layer at individual 

experiments results from dispersion analysis (ANOVA), Table 2. 

 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 6 207.5383 34.5897 5.9572 0.0003* 

Error 33 191.6105 5.8064 
  

C. Total 39 399.1488 
   

Table 2. ANOVA table for proposed prediction model 

 

It can be judged from the table of dispersion analysis that variability caused by random errors 

is markedly lower than variability of measured values explained by the model and value of 

obtained significance level (Prob > F) points out adequacy of used model based on Fisher–

Snedecor test. The further testing of used model by so called error test of insufficient model 
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adjustment, where we observe residual dispersion and dispersion of measured data inside the 

groups and test if regression model sufficiently describes observed dependency, can be found 

in Table 3. Considering the obtained value of significance 0.3486 by Fisher test it can be said 

that the model sufficiently describes variability of experimentally obtained data. Model 

significance is confirmed, dispersion of residual values is lower than dispersion inside 

individual groups at the selected significance level of 05.0 . 

 

Source DF Sum of Squares Mean Square F Ratio Prob > F Max RSq 

Lack Of Fit 28 171.2105 6.11466 1.4987 0.3486 0.9489 

Pure Error 5 20.4 4.08 
   

Total Error 33 191.6105 
    

Table 3. Table of error of insufficient model adjustment 

 

The following Table 4 presents assessment of model parameters with testing of significance 

of individual effects and their combination at significance level 05.0  based on above 

mentioned conditions and their completion (Table 2 and Table 3). 

 

Term 
 

Estimate Std Error t Ratio Prob>|t| Lower 95% Upper 95% VIF 

Intercept 
 

14.10792 0.599205 23.54 <.0001* 12.88882 15.32701 . 

x7 
 

1.483657 0.432078 3.43 0.0016* 0.604588 2.362725 0.985741 

x6 
 

1.043233 0.432078 2.41 0.0215* 0.164164 1.922301 0.985741 

x1 . x1 
 

-1.06999 0.368621 -2.9 0.0065* -1.81995 -0.32002 0.911005 

x1 . x2 
 

-0.78191 0.512519 -1.53 0.1366 -1.82464 0.260817 0.985741 

x5 . x4 
 

0.647948 0.512519 1.26 0.215 -0.39478 1.690676 0.985741 

x4 . x4 
 

-0.79972 0.368621 -2.17 0.0373* -1.54969 -0.04976 0.911005 

Table 4. Table of assessment of model parameters 

(x7 – voltage, x6 – time of zinc plating, x1 – amount of NaOH, x2 – amount of ZnO, 

 x4 – amount of glitter additive Pragogal Zn3402, x5 – electrolyte temperature, 

intercept – absolute term of the model, * - factor or factor combination is significant at 

selected significance level of 5 %) 

 

It is obvious from the table of assessment of model parameters that voltage input and time of 

zinc plating have the main influence on the thickness of created zinc layer. Except for 

individual functioning factors the second power of NaOH in the electrolyte and amount of 

glitter additive Pragogal Zn3402 have also significant impact. The absolute term of the model, 

which contains all “neglected” functioning factors in the process of electrolytic alkaline zinc 

plating, has the highest importance. VIF (Variance Inflation Factor) or inflation factors of 

dispersion of regressors are important indicators from the point of view of statistic criterion of 

non-orthogonality [7]. It is valid that VIF  is lower or equal to 1 (predictors are not correlated, 

plan is uncorrelated and orthogonal), higher than 1 but lower than 5 (indication of medium 

correlation and plan non-orthogonality), higher than 5 but lower than 10 (significant 

correlation and plan non-orthogonality) and finally higher than 10 (multi correlation of 

regressors and plan non-orthogonality). If VIF ˃1, assessment of regression coefficients is 

numerically correct, but their p – values, which are defined as diagonal elements of inversion 

correlation matrix (j = 1...p), are not correct. 

)()( 1 RD diagdiagDVIF jjj  (1) 



144 

 

 

Since results point out uncorrelation of predictors and orthogonality of experimental plan, 

based on Table 4 prediction equation for the thickness of created layer ( thy ˆ ) in coded form 

can be expressed as 

2

44521

2

167

79972,0647948,078191,0

06999,1043233,1483657,110792,14ˆ

xxxxx

xxxy




 (2) 

 

To set up the prediction relation in the natural scale it is necessary to realize that within the 

process of analysis used factors were coded by DoE norming in a coded scale: 

2

2
)(

)(
minmax

minmax

xx

xx
ix

ixd 




  (3) 

 

where )(ixd  is normed variable according to DoE, )(ix  - original basic variable, where 

ni 3,2,1 , n - the number of basic factors, maxx  - maximum value of original variable )(ix , 

minx  - minimum value of original valuable )(ix . 

 

Considering transpose relation and statistic prediction equation (3) it is possible to express 

prediction relation describing observed dependency for current density of 0.5 A.dm-2 as 

   

806,6)))3402((10.819,8))()((10.983,7

)3402(073,0)(10736,8)(112,0

)(034,0118,0671,0035,0386,0)3402(

34

225











TZnmZnOmNaOHm

ZnmNaOHmZnOm

NaOHmtUTZnmth

 (4) 

 

The prediction equation will serve as the basis to optimize the process by non-linear 

programming. 

 

 

3.  PROCESS OPTIMIZATION 

 

The nature of optimization problems lies in determining such a combination of values of 

individual factors, at which “the best” value of optimization parameter is obtained. The 

obtained factor values are called optimal values. Optimization problems are highly significant 

at proposals of technological processes as well as projecting engineering objects, their 

realization and during their operation. In term of surface treatment of metals the time of the 

process duration is one of the most important parameters that determine the efficiency of the 

entire process. If we manage to minimize the time needed to create the layer with requested 

thickness at setting functioning factors, economic profit can be maximized at securing 

requested quality. If the time of zinc plating is expressed from equation (3), an optimization 

(criterion) function is obtained. 

 

The basic task of non-linear optimization is to find the minimum of the problem defined as 
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where x, beq, lb and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) are vector 

functions and f(x) is a scalar function. Functions f(x), c(x) and ceq(x) are non-linear functions 

[8]. Conditional inequations are obtained at defining of fringe conditions of the process of 

electrolytic alkaline zinc plating considering data presented in Table 1 and Table 4 and nature 

of the process 

130)(80  NaOHm  (6) 

 

18)(5,7  ZnOm  (7) 

 

5,6)3402(2  ZnagogalPrm  (8) 

 

2812  T  (9) 

 

52 U  (10) 

 

To solve optimization problem (4) non-linear programming in Matlab was used. In 

consideration of requested thickness of the layer of 12 µm as the most often requested 

thickness respecting fringe conditions (6) to (10), optimal time of 11.305 [min] is obtained at 

m(NaOH)=112.585 [ 1lg  ], m(ZnO)=18 [ 1lg  ], m(Pragogal Zn 3402)=3.392 [ 1lml  ], T=12 

[oC] a U=5 [V]. The graphic output of optimization can be found in Fig. 1 - Fig. 5. 

 

 
 

Fig. 1. Graph of current points of optimization of zinc plating time for layer thickness of 

12 µm 
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Fig. 2. Entire function evaluations of optimization of zinc plating time for layer thickness of 

12 µm 

 

 
 

Fig. 3. Actual function value of optimization of zinc plating time for layer thickness of 12 µm 

 

 

 
 

 

Fig.4. Maximum value of violation of function of optimization of zinc plating time for layer 

thickness of 12 µm 
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Fig. 5. Step size of optimization of zinc plating time for layer thickness of 12 µm 

 

 

CONCLUSION 

 

It is not suitable to use COST approach at experimental work at analysis of technological 

processes of surface treatment, when it is important to observe mutual influence of several 

functioning factors at the same time [2]. The application of DOE approach is more suitable 

one, which is presented in the paper that solves a particular problem from practice, where 

prediction equation set on the basis of statistical analysis of experimentally obtained data in 

the process of electrolytic alkaline zinc plating was optimized by DOE application and non-

linear programming application. The main contribution of the paper is the fact that optimal 

process conditions of surface treatment were found so that fulfilment of demands of final 

customers was secured. 
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Abstract: With the increasing dependence of countries on the critical infrastructure, it 

increases their vulnerability. Big threat is primarily in the human factor and especially in 

terrorist attacks. The biggest breakthrough in the approach to the protection of the critical 

infrastructure has occurred after September 11, 2001, when there was a terrorist attack in the 

United States. Based on this event protection of critical infrastructure against terrorist 

attacks came to the fore. The emphasis is put on the application of the security audit method 

on the selected objects of the critical infrastructure to find gaps in the critical infrastructure 

security. The research will be also focused on the crisis preparedness of selected 

municipalities and results of this research will be used as a foundation for the evaluation of 

crisis preparedness of critical infrastructure objects in selected areas. 

 

Keywords: safety audit, critical infrastructure, object of critical infrastructure 

 

 

INTRODUCTION 

 

Approaches to the protection of the critical infrastructure have been long developing not only 

at home but also abroad. The biggest breakthrough in has occurred after September 11, 2001, 

after terrorist attack in the United States. Based on this event, the protection of critical 

infrastructure came to the fore. To ensure safety of endangered objects of the critical 

infrastructure by such a terrorist attack, it is appropriate to apply the method of the security 

audit for identifying the weak points. 

 

 

1.  PROTECTION OF CRITICAL INFRASTRUCTURE  

 

This chapter discusses problematics of critical infrastructure of the Czech Republic and using 

of the safety audit on selected object of the critical infrastructure. 

 

1.1 Critical infrastructure of the Czech Republic 

 

The basic function of government is to ensure the protection and development of the protected 

interests and sustainable development of human society. The Constitution of the Czech 

Republic, as the highest legal document of the Czech Republic, declares that the protected 

interests of the state are the goals that are cherished as a priority, i.e. the lives and health of 

people, property, the environment and safety. 

Critical infrastructure of the Czech Republic is defined as production and non-production 

systems and services, whose malfunction could have a serious impact on national security, 

the economy, public administration and on ensuring of fundamental life needs 
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of the population. [1] 

 

The object of critical infrastructure is then defined as a building or facility to ensure 

the functioning of critical infrastructure. Objects of critical infrastructure are the production 

and non-production systems and services whose disruption or complete destruction would 

have a serious impact on the running of the state, for its operations and performance of its 

functions. [1] 

 

1.2 Selected objects of the critical infrastructure 

 

As one of the objects of critical infrastructure we chose, as a model, airport Brno-Tuřany. 

There will be carried out a research focused on the airport of Vaclav Havel in Prague, in the 

near future. As a second object of the critical infrastructure, there was chosen the Nuclear 

Power Plant Dukovany. 

 

To enhance the protection of the objects of the critical infrastructure and minimize the risk 

of attacking those objects, it is appropriate to apply the security audit method to find weak 

points (gaps) in security. 

 
1.3. Using of security audit method 

 

Security audit is a systematic, if it is possible, independent examination to determine whether 

all activities and related to results comply with planned arrangements and whether these 

arrangements are implemented effectively and if they are suitable to achieve objectives 

and policies of the organization. Audit is an integral part of security management. It is a very 

effective tool to check its status and the status of the entire organization. [2] 

 

Audit is an independent, documented process that aims to determine whether activities and 

related results comply with audit criteria, and to what extent. Audit criteria may be procedures 

and requirements of the organization, procedures, politics etc. The outcome of the security 

audit is not only the assessment of compliance, but also to assess the effectiveness 

and reliability of safety management. The audit must take into account: 

 Effectiveness of the organization, 

 Risks, 

 Level control and process efficiency, 

 Level of management and process efficiency, 

 Opportunities for cost reduction, waste and other forms of waste, 

 Opportunities for process improvement, the overall security status of the 

organization. [2] 

 

To make audit plan to function, it is necessary to pay great attention to the selection and 

qualification of auditors. Procedures for carrying out the audits a company prepares itself and 

in accordance with the standard must include: 

 The subject and scope of the audits and their frequency, 

 Auditing methodology, defining responsibility and authority for the audit program, the 

audit arrangements in terms of management, 

 Own auditing procedure, 
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 The conditions and specifications to present reports on the results of the audit, 

 Competence requirements and training of auditors, 

 Own auditing procedure, 

 The conditions and specifications to present reports on the results of the audit, 

 Competence requirements and training of auditors, 

 Way to discuss the audit findings with relevant staff, 

 The monitoring and verification of the effectiveness of corrective measures. [2, 3, 4] 

 

With the connection of ensuring the protection with the help of security audit, there is also 

necessary to focus the attention on critical infrastructure protection but also on crisis 

preparedness of municipalities, because there are many activities of security protection closest 

to the citizens. 

 

2.  EMERGENCY PREPAREDNESS OF MUNICIPALITIES  

 

According the current legislative framework there is established new legislative background 

concerning with municipalities with extended power. Within the scope of ensuring security as 

it was mentioned before moves the attention to occupy with protection on municipality level, 

concretely said crisis preparedness to deal with extraordinary events. The branch of 

population protection and crisis management is sophisticated and it is really important to put 

the attention not only on crisis response system from the point of view of law but also from 

the point of view of municipality bodies. It means to concentrate on the role of municipality 

managers they are closest to their citizens and deal with extraordinary event just on the hot 

spot, where this situation happened. According the interview with professionals from crisis 

management departments of municipalities, they are saying that current situation about crisis 

preparedness is everything prepared but some problems could appear when new elected chiefs 

of municipalities are not so educated and erudite to be able to deal with crisis or another 

situation. From the point of view of ensuring the municipality protection is really important to 

establish a team of people that will be appropriate educated and be able to make the 

preparedness background of municipality to deal with mentioned events. [5] 

 

Also necessary was to establish some criteria that would be able to evaluate crisis 

preparedness of critical infrastructure elements because this problem has not yet been 

modified in the czech law. Indistinct competences and relationships were the basic of 

establishing new legislative framework to define specific rights and obligations of crisis 

management of the municipality. Concrete and specific informations is possible to find in the 

law of crisis management 240/2000 Coll., § 10, para. 1., about coordination the preparation 

for crisis situations and their solutions the Ministry of Interior. The part of this Ministry is 

General Directorate of Fire and Rescue Service of the Czech Republic. [5, 6] 

 

This is the analysis part of the research and in future research there will be the attention 

focused on crisis preparedness of municipalities, especially municipalities with extended 

powers. The major aim is to declare and evaluate the situation how municipalities in the 

Czech Republic are prepared to deal with crisis situations and extraordinary events. [7, 8] 

The fulfil approach will contain particular parts. There will be the current status analysis of 

problem concerning to the main topic, how the municipalities are prepared in these days, what 

they need and where we can find potential problems. After this research part will be 

performed the analysis part of the research with the main aim to define current readiness of 

municipalities with extended powers, especially with emphasis on present status where data 
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and information are collected by using interview and surveys, also from received materials 

concerning crisis management. [6, 8] 

As a technical and software support of the research will be used sophisticated software and 

programs with integrated database which will be able to provide and model an adequate 

schema of actors, entities and environments during dealing with extraordinary events. There 

will be used KISKAN program, which uses database system for supporting crisis management 

processes and also ensures business continuity. It is able to provide processing of crisis plans, 

emergency plans and plans of crisis preparedness, also ensures information exchange about 

readiness to deal with crisis situations and extraordinary events among independent subjects. 

KISKAN program focuses on the environment in which information can be processed in 

accordance with provisions of the Act No. 240/2000 Coll., on crisis management and Act No. 

239/2000 Coll., on integrated rescue system. KISKAN is able to support processes such as: 

risk assessment, local and distant crisis situations solution, sources preparation, measures 

planning, document creating many others. Among the main functions for supporting crisis 

management processes of KISKAN belong: processing of overview possible risks, sources 

integration of all information for crisis readiness into one relational database, creating of 

connecting overview to the crisis management subjects, accounting, to specify planned 

measures on the basis of experience with crisis situations, creating a centre for receiving SMS 

messages and sending notification, GPS surveillance positions and routes of mobile resources 

in real time, local and remote activation of a crisis situation by an activation code and 

monitoring their performance in real time, secure data exchange electronic signature and 

encryption, automated updates of the plan dealing with the crisis according to the status of 

tasks, further processing of the data in Microsoft Word and Microsoft Excel, synchronization 

information from remote databases and many others. [6, 9] 

 

All collected information will be processed together into specific database which will evaluate 

them and by using this programme is possible to compare answers of responsible persons, 

their relations etc. display on one scene. As a result will be concrete recommendations how to 

process and evaluate current status of crisis preparedness, how to find some shortages and 

suggest new approaches to improve the area of crisis management. [7, 9] 

 

3.  SIMULATION PROGRAMS FOR TESTING EMERGENCY PLANS 

 

Simulation is an imitation of some real thing, condition or process. The act of simulation of 

something itself generally means displaying some key features or behaviour of selected 

physical or abstract systems. Simulation is used in many contexts comprising modelling of 

natural or human systems with the aim to obtain knowledge about their behaviour. [10] Other 

contexts comprise technological simulations for optimizing the performance, security 

engineering, testing, training and educating. Simulation can be used for visualisation of 

possible real impacts, alternative conditions and ways of acting. Key issues in simulation 

comprise e.g. obtaining valid sources of information about corresponding selection of key 

characteristics and behaviour, using the simplifying estimation and prerequisites in the frame 

of simulation as well as reliability and validity of the results of the simulation given. [6, 11] 

 

For the training preparation and verifying crisis plans, instructors can use various computer 

programs which enable better graphic visualisation of the solution, practice different ways of 

dealing with the different situations and the way of command. What is more, they can 

represent a tool for the various roles in the process of solution of the emergency situation. The 

environment of these programs increases the effect of preparation, which results in being 

more realistic and the trainees will better memorise the trained actions. [8] To verify crisis 
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plans and crisis staffs of personnel currently we use the program One Semi-Automated 

Forces, which was developed for the army, but after some modification it is also possible to 

use it in civil sector. 

 

3.1 One Semi-Automated Forces 

 

Simulator OneSAF is a program of constructive simulation already used for several years 

which became widely used according to the needs of training as well as requirements of the 

trainees. Currently, a wide spectrum of CAX training types can be carried out by it. The 

program has been further adapted and adjusted according to the needs of the Army of the 

Czech Republic especially in relation with introducing new armament and equipment. [10] 

 

System has been extended by the elements of the Integrated Rescue System IRS and is widely 

used for the training of crisis management staff/specialists of IRS, especially HZS and PCR. 

It is an older simulation system of constructive simulation. Nowadays its technology is 

outdated. It is primarily aimed at military purposes. Simulation of the activities of the units of 

IRS is feasible only partially with certain restrictions. From this reason is currently 

implemented simulate system WASP-C, which simulate extraordinary events and activities of 

forces and means of the integrated rescue system (IRS) and other players in real time. 

 

3.2 Simulation system WASP 

 

It represents a system of constructive simulation for the computerised generation of forces and 

creation of synthetic environment. Originally it was designed for the use of army but the 

version for the components of the Integrated Rescue System called WASP-C has been 

developed as well. The simulator enables to practice management on the tactical, operational 

and strategic levels. Modelling of various emergency situations and their solution is possible 

in this environment. 

 

Environment in the simulator is ensured by the combination of terrain database created from 

the detailed geographical data, model of weather and other dynamic environmental models. 

Terrain database contains all common objects in the countryside (bodies of water, roads, built-

up areas, vegetation, relief, type of soil and other objects). Individual objects have predefined 

features influencing simulation of their own entities in relation to their purpose. Weather 

editor enables to set basic parameters (date and time, air temperature, velocity and direction of 

the wind, type and intensity of precipitations, humidity and pressure of air, type of cloud 

cover, light intensity etc.). Some of the parameters are mutually interlinked based on the 

actions happening in the atmosphere known from meteorology. Dynamic models of 

environment enable to modify the countryside with objects and phenomena which can change 

their form in the course of time. There are accidents simulated in great detail as well as a vast 

database of forces and means. Program puts more emphasis on the correct execution than on 

graphic output and it is aimed at the group of trainees as well as at an individual. [12]  

 

Concept of the program is suitable for the use in practical training of solving emergency 

events with the mutual cooperation of the intervening units. The system is completed by a 

communication system Astra, which simulates normal means of communication (telephones, 

radios, PTT, etc.). Exercise and verification of crisis plans in an environment and only with 

funds that have crisis teams routinely available. 
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This simulator has proven in previous practical exercises, especially when exercising in 

Hustopeče, where the exercise was carried out to verify the crisis plans of the municipality. 

Exercise was attended by surrounding municipalities, the IRS and other stakeholders. [12] 

Conclusions from the exercise helped unify procedures in dealing with similar incidents and 

to give impetus to further cooperation between the municipality Hustopeče, local companies 

and the IRS. 

 

 

CONCLUSION 

 

The current situation raises a claim for continual improvement of safety relative to existing as 

well as future threats. Emphasis is put mainly on education and erudition managers, but also 

to implement the latest technologies and practices that can contribute to improving safety, not 

only in terms of protection of critical infrastructure, but also in terms of ensuring the 

protection of the population and improving the crisis management process. 

 

The solution of crisis situation can be designed and provided by the crisis continuity scenarios 

and sophisticated methodological approach. The newest requirements to provide protection of 

municipalities, its population and property is still significant item and especially for 

municipalities, because after legislative reform is this branch full of gaps that can be studied. 

 

The actual simulation cannot replace the practical deployment in emergencies where 

trespassing gain unparalleled practical experience and crisis plans are proved in practice. 

However, for the purpose of preventing and preparing for emergencies and crisis situations is 

the best practical training. [11] In artificially induced emergencies through constructive 

simulator, workers can check not only emergency staff contingency plans, but also their own 

communication and leadership skills.  
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Abstract: In this paper, we formulate a generalization of a sufficient condition for the 

convergence of series with positive terms published by Estrada and Kanwal (1986). We give a 

necessary and sufficient condition to such a density for a certain class of matrices be a 

compact submeasure. Further we provide an example of the regular matrix for which the 

density defined by this matrix is not compact submeasure. Finally, an exponential density of 

sets is defined and it is shown that it is not a compact submeasure whenever if the set . 

 

Keywords: convergence of series, density of sets, compact submeasure 

 

1. INTRODUCTION 

 

In the papers [9,10,12] the notion of compact submeasure was introduced. The set function 

 is called a submeasure if it is monotone and subadditive, i.e. 

i)  

ii)  

 

The submeasure  is called compact if 

iii)  for every  

iv) for every  there exists a decomposition  of  such that 

 for each . 

 

 Before we define the concept of density recall the concept of a regular matrix. A method 

defined by the infinite matrix  is said to be regular if for all 

convergent sequences  for which  implies that the sequence 

 converges to . It is well-known that the matrix is regular if 

and only if it satisfies the following three conditions (see [11]): 

 

a)  

b)   

c)  

 

For example, Caesaro-matrix ,  where   is 

regular.  
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Definition 1.1. 

 

Let be a nonnegative regular matrix and  Let  

 
where  being characteristic function of . Then  

    is called upper - density of  

and 

 is called lower - density of . 

If , then  is a - density of . 

By the regularity of  it is clear that  

 

Below are some examples. 

 

Example 1.2. 

 

Let , where   if   and  otherwise.  Matrix         

 is regular and called Zweier matrix. It is easy to see, that  if it 

exists. 

 

Example 1.3. 

 

Let is regular matrix defined by following way: 

          for , 

 

          for , 

 

where  Then 

. Specifically, if   for every , then we get 

 asymptotic density of the set  If    for every 

, then we get  logarithmic density of the set  

(see [6,7,8,10]). If  for every  and  the matrix is Riesz 

matrix of type (cf.[4]). Generally, density defined by the matrix  is called weighted 

density of the set  (cf.[10]). 

 

Example 1.4. 

 

Let is a regular matrix defined by the following way: 
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          for , 

 

          for , 

 

where    

Then  is a density defined by at the Norlund matrix. It is 

known that Norlund matrix is regular if and only if   (see [11]). 

 

Example 1.5. 

 

According to the Steinhaus theorem ([11, Lemma 3.5.4.]) for every regular matrix there exists 

a sequence of 0’s and 1’s which is not summable by this matrix. Such a sequence is the 

characteristic function of a any set.  Hence there is a set  which has not a - density. 

 

Finally, we give two type of densitites which can not be defined by a regular matrix.  

Let . The upper uniform density term  

and lower uniform density term Where it is equal to 

their common value is  uniform density  of   (see [1,3]). The upper and lower 

exponential densities of an infinite subset  are defined by  , 

  respectivelly. If  then we say that  has the 

exponential density. In case when   is a infinite then 

 is an exponent of convergence of the sequence  (see [5]). 

 

2. MAIN RESULTS 

 

In 1986 Estrada and Kanwal proved that if a series with positive terms converges along each 

set of the zero asymptotic density then it converges in the usually sense as well. It means that 

a series with positive terms is divergent there is a set  with zero asymptotic density also 

that the series divergent along this set (cf.[2]). For example the harmonic series is divergent 

hence there is a set  of all primes having zero asymptotic density and series of reciprocal 

values primes is divergent too. M. Paštéka generalized this result. He replace the term 

asymptotic density with compact submeasure.(see [9]).  

 

We denote  class the subsets of , where  is arbitrary density 

defined in this article. Following inclusion is true: 

. 
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 For example set  have not uniform density, but its asymptotic 

density is equal to zero. Further the set   , where  have 

not asymptotic density but its belong to the class  . 

 

 

In [12] it is proved this Theorem: 

 

Theorem 2.1. 

 

Let  be a series with positive terms. If for each  with  we have 

 , then . 

 

Proof. 

It can be easily cheeked that  satisfies properties i) – iv) of the compact submeasures. Since 

 then we choose an  such that  . The desired decomposition of  can be 

taken by decomposition of the residual class, e.g. . It is true that 

 (see [9]). Hence is a compact submeasure on .                                                             

 

 

We ask yourself a natural question: when the - density is a compact submeasure? For the 

upper density  defined by the matrix (see Example 1.3.) we find a necessary 

and sufficient condition such that to be a compact submeasure on . 

 

Theorem 2.2. 

 

Let  is a regular matrix defined in Example 1.3.  

Then  is a compact submeasure if and only if  

. 

 

Proof. 

Let  is holds. According to Theorem 1.2. in [8] the upper density  has 

Darboux property. It follows that  can be decomposed into  such that 

. In this way we can construct by induction a decomposition 

 such that , and this implies 

that  is a compact submeasure. 

 

Let  do not hold. Then there exists an infinite sequence  and  such  

that Consider a decomposition . This 
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decomposition is finite, therefore one of the sets  must contain infinitely many 

elements of . Let .  Then  and so 

. Therefore  is not a compact submeasure.                                                  

 

 

 

Corolarry 2.3. 

 

a) From Theorem 2.2. 

follows, that upper asymptotic and upper logarithmic density are compact submeasure 

on  . 

b) Thus in Theorem 2.1. 

can by replaced the upper uniform density  by the density  if   

holds. 

 

Theorem 2.4. 

 

There exists a regular matrix  for which the upper density  is not compact 

submeasure. 

 

Proof.  

Let us put  in Example 1.3. Subsequently  and  

 otherwise. It is easy to see that  is regular but condition of Theorem 2.2. 

is not satisfied: .                                                                                                                                                                          

 

 

Finally, we prove that the upper exponential density is not compact submeasure. In [5] it is 

shown that for the set  we have     where 

 
is an exponent of convergence. It is unknown that for  it holds 

 (see [12]). 

 

Theorem 2.5. 

 

Let . Then upper exponential density  is not compact 

submeasure. 
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Proof. 

We assume that  is a compact submeasure, . On the basis of iv) 

properties of compact submeasure for every    there exists a decomposition 

, also that  Let   

Then   

This is contradiction.                                                                                                                   

 

Consequently can not replace  with  in the Theorem 2.2. 

 

Open problem 

Is a density defined by Norlund matrix (Example 1.4.) compact submeasure? 
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