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Stability of the Zero Solution of Stochastic Differential
Systems with Two-dimensional Brownian motion

Jaromir Bastinec, Marie KlimeSova

Department of Mathematics, Faculty of Electrical Engineering and Communication Brno
University of Technology,
Technickd 2848/8, 61600, Brno, Czech Republic.
bastinec@feec.vutbr.cz, xklimeOl@stud.feec.vutbr.cz

Abstract: The natural world is influenced by stochasticity therefore stochastic models are used
to test various situations because only the stochastic model can approximate the real model. For
example, the stochastic model is used in population, epidemic and genetic simulations in medi-
cine and biology, for simulations in physical and technical sciences, for analysis in economy,
financial mathematics, etc. The crucial characteristic of the stochastic model is its stability.

This article studies the fundamental theory of the stochastic stability. There is investigated
the stability of the solution of stochastic differential equations (SDEs) and systems of SDEs.
The article begins with a summary of the stochastic theory. Then, there are inferred conditi-
ons for the asymptotic mean square stability of the zero solution of stochastic equation with
one-dimensional Brownian motion and system with two-dimensional Brownian motion. There
is used a Lyapunov function for proofs of main results.

Keywords: Brownian motion, stochastic differential equation, Lyapunov function, stochastic
Lyapunov function, stability, stochastic stability.

Introduction

Stochastic modeling has come to play an important role in many branches of science and in-
dustry where more and more people have encountered stochastic differential equations. Sto-
chastic model can be used to solve problem which evinces by accident, noise, etc. Definition
of probability spaces, stochastic process, stochastic differential equation and an existence and
uniqueness of solution of these equations, were mentioned in [ 5], [16], [17]. It was taken from
B. @ksendal [13], E. Koldfova [9], B. Maslowski [11], S. Ditlevsen [3], M. Navara [!12] and
J. Stan€k [14]. In this paper we focus on the description of the stochastic stability. Stability is
studied both for difference equations and systems [5], and for differential equations and systems
[1]1, [2], [4], [6] or [7]. The stability theory was introduced by R. Z. Khasminskii [8]. The basic
principles of various types of stochastic systems are described by X.Mao [10]. In the paper we
derived sufficient conditions for general system of the zero solution of the stochastic differential
equation using Lyapunov function.

Definition 1 Let (Q2, F, P) be a probability space. Let By = (B (t), ..., B (t)) be m-dimensional
Brownian motion and b : [0, T] x R" — R", 0 : [0,T] x R"™ — R"*™ be measurable functions.
Then the process Xy = (X1(t), ..., X;n(t)), t € [0, T is the solution of the stochastic differential
equation



dXt = b(t, Xt>dt + O'(t, Xt>dBt, (1)

b(t, X;) € R, o(t, X;)W,; € R. After the integration of equation (1) we give the solution of the
SDE in the integral form

t t

Xi=Xo+ /b(s,Xs)ds—l— /O’(S,Xs)dBS.
0 0

Assume that for every initial value X;(0) = X, € R", there exists a unique global solution
which is denoted by X (¢; ¢y, Xo). So equation (1) has the solution X;(0) = 0 corresponding to
the initial value X;(0) = 0. This solution is called the trivial solution or equilibrium position.

1 Stability of Stochastic Differential Equations

In 1892 A.M. Lyapunov developed a methods for determining stability without solving the
equation. We are used the second Lyapunov method: Let /K denote the family of all continuous
nondecreasing functions p : Ry — R, such that ;(0) = 0 and p(r) > 0if r > 0. For h > 0,
let S, = {x € R" : |z| < h}. A continuous function V (z, t) defined on S}, X [to, 00) is said to
be positive-definite (in the sense of Lyapunov) if (0, t) = 0 and, for some p € K,

V(z,t) > pu(|z|) forall (z,t) € Sy X [to, 00).

A function V' (x,t) is said to be negative-definite if (—V'(x,t)) is positive-definite. A conti-
nuous non-negative function V' (z, ) is said to be decrescent (i.e. to have an arbitrarily small
upper bound) if for some € K,

V(z,t) < p(lz]) forall (z,t) € Sy X [tg, 00).

A function V' (z, t) defined on R™ X [to, 00) is said to be radially unbounded if

lim (inf V(:c,t)) = 0.

|| =00 \ t=to

Let CH1(S), x [tg,00), Ry) denote the family of all continuous functions V' (z,t) from S}, x
[to, 00) to R with continuous first partial derivatives with respect to every component of x and
to t. Then v(t) = V (¢, X;) represents a function of ¢ with the derivative

oV —~ oV
o(t) = Vilt, X,) + Vo(t, X)b(t, X,) = = (t, X S X))t X).
0(t) = Vi(t, Xo) 4 Va(t, X0)b(t, Xo) 8t( t)+;3$i( £)bi(t, Xy)
If v(t) < 0, then v(t) will not increase so the distance of X, from the equilibrium point measured
by V (¢, X;) does not increase. If 0(¢) < 0, then v(¢) will decrease to zero so the distance will
decrease to zero, that is X; — 0.



Theorem 1 (Lyapunov theorem) If there exists a positive-definite function
V(x,t) € CYY(Sy x [to, 00), Ry ) such that

V(z,t) = Vi(t, Xy) + Vi(t, X)b(t, X;) < 0

for all (x,t) € S X [to, 00), then the trivial solution is stable. If there exists a positive-definite
decrescent function V (x,t) € CY1(S), X [tg, 00), Ry) such that V (x, t) is negative-definite, then
trivial solution of the system is asymptotically stable.

Suppose one would like to let the initial value be a random variable. It should also be pointed
out that when o(®*) = 0, these definitions reduce to the corresponding deterministic ones. We
now extend the Lyapunov Theorem 1 to the stochastic case. Let 0 < h < oo. Denote by
C*' (S, x Ry, R,) the family of all nonnegative functions V' (z,t) defined on S, x R, such
that they are continuously twice differentiable in  and once in . Define the differential operator
L associated with equation (1) by

82

0 "9 1 < T
L= ot + ; ox; (t, Xe)bi(z,t) + 2 ijz:l O0x;0x; [U(x,t)a (x’t)]ij :

The inequality V(x,t) < 0 will be replaced by LV (z,t) < 0 in order to get the stochastic
stability assertions.

Theorem 2 [f there exists a positive-definite

(i) function V(x,t) € C*Y(S), x [tg,0), Ry ) such that LV (z,t) < 0 for all (x,t) € S, X
[to, 00), then the trivial solution of equation (1) is stochastically stable.

(ii) decrescent function V(x,t) € C*'(S), X [ty,00), Ry) such that LV (z,t) is negative-
definite, then the trivial solution of equation (1) is stochastically asymptotically stable.

(iii) decrescent radially unbounded function V(x,t) € C*'(R" X [ty,00), Ry) such that
LV (z,t) is negative-definite, then the trivial solution of equation (1) is stochastically
asymptotically stable in the large.

Proof: [10], pp. 111.

2 Main results
We have a homogenous linear stochastic differential equation

= (50) 4= (2 2) 0= (5 1) (29

a,b,c,d, e, f, g are constants.
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Definition 2 Lyapunov quadratic function V' is given

V(Xt) = XtTQ Xt7

where () = ( 5 Zq? ) is a symmetric positive-definite matrix, i.e. p > 0,

p? —q* > 0.

Theorem 3 Equation (2) is stable if

LV =2[aX7(t) +dX5(t) + (c+ ) X1 () Xa(t) + € + [+ ¢° + h*].

Proof:

We compute derivation of Lyapunov function of equation (2)

AV (X,)

_|_

We use the rules:

V(X +dX,) — V(X,)

(XTI + (AX)Tdt + (GdB)")Q(X, + AX,dt + GdB,) — X} QX,
XX, + X[ QAX,dt + X QGdB; + (AX,) " dtQX,
(AX)TdtQAX,dt + (AX,)TdtQGdB, + (GdB,) " QX,
(GdB)"QAX,dt + (GdB;)* QGdB;, — Xl QX

XTQAXdt + XT'QGdB, + XFATatQX, + XTI ATdtQAX,dt
XFATdtQGdB, + dBI GTQX, + dB] GTQAX,dt + dBf GTQGdB,.

dt - dt = dt - dBy(t) = dt - dBy(t) = dBy(t) - dBs(t) = 0,

dBy(t) - dBy(t) = dBs(t) - dBs(t) = dt.

After modyfying we get

dV(X,) = X'QAX,dt+ XIQGdB, + X ATdtQX, +dBIGTQX,

In matrix form

+ dBl'GTQGdB,.

) = () (o)) ()
< () ()G (Ed)
Xi(t) ! <>)dt

Xo(t) (t)

+
7~/ N 7 N -7 N -7 N 7N

- () ) () ()
Qo) (o) (o) (G5 0) (i)



We determine

( i)g;lézéii)f(w)(
= (G (e (o)

= (' mudBi(t) +madBs(t) madBi(t) +madBs(t) ) ( Zg;g; )

= mldt + m4dt = t’f’(M)dt,

@ o
>~
~
N
QO
SISy
N =
—~
AN
~_

where ¢r(M) is trace of square matrix M.
We get

dV(X;) = 2[(ap+cq) X7 (t) + (dp+bg) X3(t) + ((b+ c)p
+ (a+d)g) X1 Xo(t) + (2q(hf +eg) + p(e* + f2 + ¢* + h2))] dt
+ 2[(ep+99)Xa(t) + (gp + eq) Xo(t)] dBi(t) + 2 [(fp + hq) X1(t)
+  (hp+ fq) Xa(t)] dBa(t).

We apply expectation E {dV (X;)}

E{dV(Xy)} = 2[(ap+ cq)X7(t) + (dp+bg) X3 (t) + ((b+c)p
(a+d)q) X1(t)Xa(t) + (2q(hf + eg)

_.|_
+ ple®+ P+ ¢+ h%)] dt = LVdt.

For () = I we get

LV =2[aX{(t) +dX5(t) + (c+ ) X1 () Xa(t) + € + [+ ¢° + h*].

Now we can do a discussion under which conditions the system will be stable.

The Euclidean matrix norm A on the space R" can be define as

where a;; is a matrix element of the i-th line and of the j-th column of the matrix, n is number
of matrix raws, m is number of matrix columns.
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We denote ¢* + f2 + ¢* + h? = |G|
and give

LV =2 [aX}(t) + dX3(t) + (c+ D) X1 () Xa(t) + |G- (3)

The Lyapunov function LV will be negative definite if and only when
aX3(t) + dX3(t) + (c+b)X1()Xo(t) + |G]* < 0,

because HG||2 > 0, therefore the matrix A must be sufficiently negative, to obtain a negative
definite function.

Sylvester’s criterion is a necessary and sufficient criterion to determine whether a matrix is
positive-definite.

Theorem 4 (Sylvester’s criterion)
Let A be a real symetric matrix of the n-th order. For k = 1, ... ,n we denote the main subde-
terminants Dy, of the matrix A

a1 a2 - Qg
Qg1 Q22 -+ QAa2p
Dk = det . .
g1 Qg2 - Qkn
Then the matrix A is positive definite if and only when Dy, > 0 pro k = 1,...,n. And analo-

gously the matrix A is negative definite if and only when (—1)kDy, > 0fork =1,...,n.

Corollary 1 First, we consider a diagonal matrix A in the form

=(52)

The matrix A will be negative definite under following conditions:

D = lapn|=a<0 . ..
! ] ' if holds Dy then the condition Dy
. ai; Q12 i a 0 9 . .
Dy, = = =a” >0 is obvious.
a1 Q929 O a

Then from (3) follows
2 2 2
aXi(t) +aX5(t) < -Gl
or

2 2
al Xl < =[G

13



If the variable a is negative and also inequality a || X,|* < — ||G||* is valid, then the system is
stochastically stable.

We find a solution of the stochastic system based on eigenvalues. If

a12 = ag; = 0, then \y = a11, Ay & ax = A\ 2 = a. Because a is negative we make substitu-
tion a = —a, > 0. We give a solution of the system

Xl(t) = C’le_at,
Xo(t) = Cote™™,

when C1, Cy are constants.

Corollary 2 We consider a diagonal matrix A in the form

(54)

The matrix A will be negative definite under following conditions:

D1 = |6L11|:CL<O,
D, = [* 0—ab>O:>b<0
2 = 0y pl = .

Then from (3) follows

aXP(t) +bX3(t) < —|G|*.

We find a solution of the stochastic system based on eigenvalues. \; = a,
Ay = b. We substitute a = —a,« > 0,0 = —f3, 5 > 0. We give a solution of the system

Xl(t) = Cle_at,
Xy(t) = Cyte™™,

C4, Cy are constants.

Corollary 3 We consider a symmetric matrix A in the form

a b
A= ( ! ) |
The matrix A will be negative definite under following conditions:

D1:CL<0,

Dy=a?—12>0=|a > || } i.e. must be valid |a| > |b| > 0.

14



Then from (3) follows

aXP(t) +aX3(t) + 20X: () Xe(t) < |G
a| X +26X1 (1) Xe(t) < —IG|I°

The variable a must be sufficiently negative and also inequality
a[|X ()" + 26X (1) Xs(t) < — [|G]*
must be valid, then we can say that the system is stochastically stable.

We find eigenvalues of matrix A as the solution of the characteristic equation

det(A — \E) =0,
where E is the unit matrix.
la—=A b | 9 5
|A— \E| = b a_)\‘—(a—)\) —-b = 0,
(a—X)? = b,
la—Al = 1[0].

Eigenvalues are

—a+X M =1|b=X\N=a+|b,
a—)\2:|b|:>/\2:a—|b|

We substitute o = —a, 0 > 0, [b| > 0,0 < |b], i.e.

)\1 = —a-+ |b’ s
)\2 = —— |b| .
For the eigenvalue \; = —« + |b| we find the eigenvector

U1 = (0117?112)-

There is any nonzero vector which fulfills a following relation

(A—)\lE) v1=O
a— (a+1[b]) b _
( b a—(a+|b|)>“1—0

15



For b > 0 we choose an arbitrary vector vy = (1,1)T, for b < 0 we choose v; = (—1,1)7.

)

Then
for b>0 is X,(t) = (1,1)Telratdl
for b<0 is Xy(t) = (—1,1)Tel-a+b)t
For the eigenvalue A\, = —a — |b| we find an eigenvector

Vg = (71217 U22)

(A_)\lE)UQZO
a— (a—|b]) b _
( b a—(a—\bl))vz_o

For b > 0 we choose an arbitrary vector vy = (1, —1)T, for b < 0 we choose vy = (1,1)7.

Then

for b<0 is Xo(t) = (1,1)Telra bt
for b>0 is Xo(t) = (1, —1)Tel-a=

The general solution is given by a linear combination X, = C1 X, (t) + Co X5 (t), with arbitrary
constants C1, Cs.

Corollary 4 We consider a symmetric matrix A in the form

A=

> O Q
o e O
Q O

The matrix A will be negative definite under following conditions:

D1:CL<O,
Dy =a? >0, D, follows from Dy, = |a| > [b].
Ds=a*—al® <0=a(a®> - ) <0&a<0Aa® >

We find eigenvalues of matrix A as the solution of the characteristic equation

a— A 0 b
0 a—X 0 |=0,
b 0 a— A



(a— N> —(a— NV = 0,
(a—MN((a=XN?=b*) = 0 (a—-N)=0V(a—N*=b*=0,

M=0= X(t)=¢€" =1,
A —2a\ + (a® — b*) =0,

2a £+ +/4a? — 4(a? — b?
Aog = ¢ \/a2 (a ):>)\273:a:|:\b|.

We substitute o = —a, o > 0, [b] > 0,0 > |b] , i.e.

)\2 = —a-+ |b| s
)\3 = —— ’bl .
For the eigenvalue Ay = —a + |b| we find the eigenvector

V2 = (U21, V22, 023)-

There is any nonzero vector which fulfills a following relation

(A_)\QE) (%) =0

a—(a+ b)) 0 b
0 a-@rh) 0 Jw=0
b 0 a—(a+|b|)

For b > 0 we choose an arbitrary vector vy, = (1,0, 1), for b < 0 we choose v, = (1,0, —1).

Then
for b>0 is Xy(t) = (1,0,1)Tel-ot0)
for b<0 is Xy(t) = (1,0, _1)T6(—a+b)t'
For the eigenvalue \3s = —o — |b| we find an eigenvector

U3 = (031, V32, U33)7

a— (a—1b]) 0 b
0 a—(a—1b]) 0 vy =0
b 0 a—(a—1b|)

17



For b > 0 we choose an arbitrary vector v = (1,0, —1)T, for b < 0 we choose vz = (1,0,1)T.
Then

for b<0 is X3(t)=(1,0, 1)Te(—a—b)t’
for b>0 is Xs(t) = (1,0,—1)Telmo701,

The general solution is given by a linear combination X; = C1 X, (t) + C2Xs(t) + C5X5(%),
with arbitrary constants C',Cy, Cs,

1 1

for b>0 is X, =C,+Cy [ 0 ety 0 |elmo ¥t
1 -1
1 1

for b<0 is X;=Cy+Cy 0 |eCott oy 0 |elodt

Note: It is a solution of differential equation without a stochastic element. We have demonstra-
ted the matrix A must be dominant for the stability of the system,

[A[> G-

2.1 Examples

Example 1 We have stochastic differential equation in the form

Xi(t)\ [0 -1 X1 (t) 10 dBy(1)
d(Xz(t))_(l ()) <X2(t) dt + 01 dBy(t) ) 4)
We determine stability of solution using derivation of Lyapunov function
X (t)
W oy ) = 2XadBi0) + 2X()By(r) + 4t
E {dV ( Xa(t

Xt )} = 4dt = LV dt.

Function LV = 4 > 0 is positive-definite. Trivial solution of system (4) is unstable.

(
(
)
)

Example 2 We have stochastic differential equation in the form
X))y (-2 1 X (t) 10 dB(t)
d( Xo(1) ) = ( 1 -2 ) ( @ )% o 1) Las) ) )

18



We determine stability of solution

dV(Xl(t)) L 22X (D2(E) — 2X(D)2(t) — 2X (1) Xa(t) + 2t
+ 2X\ (OB (L) + 2X5(H)dBa(t),
Xi(t) (o2 _ 924 _ _
E{dV(XQ(t) >} — 2(—2X2(t) — 2X2(t) — 2X, (1) X, (1) + 2)dt = LV L.

Function is negative-definite for LV < 0, i.e.

2(—2X3(t) — 2X2(t) — 2X,(t) Xo(t) +2) < 0,
Xi(1) + Xa(t)] > /1= X1(H)Xs(1),

for X1(t)Xo(t) < 1, then trivial solution of system (5) is stable.

3 Conclusion

In this paper it was defined stability and stochastic stability of the stochastic differential equati-
ons. It was computed specific examples by using Lyapunov theorem. Such type of equations
can be used also in biomedical engineering, in meteorology, epidemic modeling, predicting
economics, etc.
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Abstract: The article is devoted to the problem of existence and construction of iterative
roots of mappings of the sets into themselves and their possible use while solving tasks. The
main part of the article is devoted to the application of the stated theory. First, the necessary
and sufficient condition for the existence of iterative roots of all orders is given, further the
condition is specified for the existence of the iterative root of order two.
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INTRODUCTION

The article is devoted to the iterative roots of set transformations and their use while solving
tasks. Althought at first sight this topic seems to be considerably distant from the university
mathematics teaching, the reverse is true. The substance of the existence and construction of
iterative roots lies in the approach to mappings and functions from the discrete point of view,
when we understand them as monounary algebras and represent them with the help of the
vertex graphs. Such an approach enables effective solving of many problems and tasks from
different mathematics areas. Moreover, in comparison with the classical approach to
mappings and functions from the continuous perspective, it contributes to the deeper insight
to its mathematical essence. The discrete interpretation of functions appears only seldom at
the mathematics teaching at high schools and universities, although it can be extremely
beneficial for participants in higher levels of the Mathematical Olympiad (see [4], [6], [12]).
The considerations, which are used while formulating definitions, theorems and proofs in the
iteration theory, especially the ones used when solving the problems of existence and
construction of iterative roots of functions on finite sets, can be used as the suitable topic for
students” individual scientific activity while their mathematical abilities development.
Students can thus discover their own numerous nontrivial results without studying formally
complicated theories, too distant from the commonly discussed topics in the regular lessons.
Now, let us remind some necessary terms and theorems from the functions iterative theory.

1. ITERATIONS OF SET TRANSFORMATIONS, VERTEX GRAPHS

The mapping f: X — X of the set X into itself will be called the transformation of the set X.
For n e No let us define the n-th iteration f of the set X as follows:
fOx) = x, F1(x) = f(x), f"(x) = (f o f "1)(x) for every x e X; in the shortened form f"=fo f "%,

If the transformation f is a bijective mapping of the set X into itself, the definition of the given
set iterations can be broadened also for a non-negative integer n in the following way: let us
denote f ! as an inverse function to the function f on the set X, thenf 2 =f 1o f 1 f 1= (f
1 It is necessary to distinguish between the notation of the n-th iteration of the function f,
which is f " (the value of the iteration for the element x is f "(x)), and the expression [f(x)]".
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Every transformation f of the set X determines the equivalence ~f on X as follows: x ~¢ v, if
and only if there exists a pair of positive integers m, n that f "(x) = f "(y). The blocks of the
decomposition of the set X determined by the equivalence ~¢ are called orbits of the
transformation f, in short f-orbits. The set containing elements x, f(x), f 2(x), f 3(x), ... is called
the iterative sequence starting in x or also the f-splinter of the element x.

Let k be a natural number, then the cycle of the order k (k-cycle) of the mapping f: X— X'is
the set {xo X1,...,X-1} Of the set X elements for which there applies f(xm) = Xm+1 for 0 <m <k-1

and f(xk-1) = xo. The orbit containing a cycle is called the cyclic one, otherwise the acyclic
one. For k = 1, the element x e X with the property f(x) = x is called the fixed point of the
transformation f. For cyclic orbits, there is an important term of the depth of the element x
(below the cycle) which is denoted h(x) and defined as the least non-negative number for
which f "®(x) is the element of the cycle. All elements of the cycle are of the depth 0.

Let us give some orbit properties which will be further used (see [14]):

e Every orbit contains at most one cycle.

e The orbit is acyclic if and only if for its every element there applies that the corresponding
iterative sequence contains infinitely many elements.

e Every finite orbit is cyclic (the chain ending in the cycle is not infinite, although it
contains infinitely many elements).

In the case of the injective transformation f, the orbits are isolated cycles, two-sidedly infinite
chains, or infinite chains bounded from below by the least elements; if f is a bijection, its
orbits are either cycles or two-sidedly infinite chains. The set of orbites of the function f is
also called the orbit structure. The graphic representation of the orbits is the vertex graph.

Here follow illustrative examples.

1 2 3 456 7 8
a) Let X ={1,2,3,...,8}, the transformation f is defined: f :( j .

4 4 4 6 8 8 8 8

Fig.1. Vertex graph of transformation f defined by the matrix.

b) Let X = R, for every x e X there applies f(x) =—x. The only fixed point is number zero, for
other elements of the set X there applies f ?(x) = x. The orbits of the function f are then one
loop and uncountably many cycles of order 2.
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-1 -2
0 X Q <:> <:>
0 1 2
Fig. 2. Vertex graph of transformation f(x) =—x.
c) Let X = R —{0}, for every x e X there applies f(x) = x*. For x e {-1,1} there applies f(x) =

x, for other elements of the set X there applies f 2(x) = x. The orbits of the function f are then
two loops (fixed points) and uncountably many cycles of order 2.

y)

—  POYY

Fig. 3. Vertex graph of the transformation f(x) = x.

2. ITERATIVE ROOTS

Let X = ¢, let f be the mapping of the set X into itself, the number m € N, m > 1. The main
problem of the iterative theory is to find such an arbitrary mapping g of the set X into itself
that for every element x of the set X there applies:

g"="f

The mapping g is called the iterative root of the order m of the function f or the m-th iterative
root of the function f. Let us illustrate the term of the second iterative root in Fig. 4, where
there are vertex graphs of transformations f, g of the set X = {1,2,3,4,5,6,7,8}.

_(12345678J _(1234567

6 6 6 8 8 8 8 8

8
. there applies g? = f.
4 4 4 6 8 8 8 8J PRIES T

1 2 3 1 2 3
Fig. 4: The mapping g is the second iterative root of the mapping f.
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Now let us briefly outline the general theory of the existence and construction of the iterative
roots. For the didactic purposes, it is fundamental that in special cases (real elementary
functions, bijective functions, ...) it is not necessary to apply complicated theorems of the
general theory while solving functional equations of one variable, but there exists a more
efficient solution. The following twelve theorems are taken from the publication [14], where
you can find their proofs and other details.

Theorem 1: Let X = ¢, let f, g be such mappings of the set X that g"=f, m e N. Then the
mapping g is surjective if and only if f is surjective.

Theorem 2: Let X = ¢, let f, g be such mappings of the set X that g" = f, m e N. Then the
mapping g is injective if and only if f is injective.

Theorem 3: Let X = ¢, let f, g be such mappings of the set X that g" = f, m e N. Then the
mapping g is bijective if and only if f is bijective.

Theorem 4: Let g be the m-th iterative root (m eN, m >2) of the mapping f of the non-empty
set X. Then every g-orbit is the union of p f-orbits, where p/m. If p <m, then g-orbits are n-
cyclic, and p/n. In addition, all f-orbits are %-cyclic and at the same time the greatest

common divisor (GCD) of numbers m, n equals p.

Theorem 4 describes properties of iterative roots provided that they exist. Now let us state the
general necessary and sufficient conditions for the existence of iterative roots.

Definition: Let f be the mapping of the set X into itself, let r, m be natural numbers with the
property r/m. Let the mapping f contain at least r orbits and let there be given r f-orbits. These

orbits will be denoted m-mateable (by any mapping g), if g is the m-th iterative root of the
function f, if it has one orbit and represents the union of the given r f-orbits into themselves.
For r = 1 this only f-orbit is called m-self- mateable.

Theorem 5: If in the previous definition there applies r <m, then the necessary condition for
the m-mateability of r f-orbits is the fact that each of them is k-cyclic (with the same k) and

there applies that GCD (k,m) = 1. The corollary of this theorem is, among others, the fact
r

that the acyclic f-orbit cannot be m-self- mateable for any m.

Theorem 6: An arbitrary mapping of a non-empty set has the m-th iterative root (m e N) if
and only if the set of orbits of this mapping can be decomposed to disjoint blocks with
following properties:

1° The number of orbits in each block is finite and it is the divisor of the number m.
2° Orbits in each block are m-mateable.

Theorem 7: For the existence of the m-th iterative root (m € N, m >2) of the mapping f: X —
X it is sufficient if in the orbit structure of the function f there exist for each occurring orbit
type either infinitely many orbits of such type or their number is divisible by the number m.

Theorem 8: Let f be the bijection of any set into itself. Let us denote lo the number of the two-
sidedly infinite chains, Ik the number of the k-cycles of the mapping f, k € N. Then there
exists the m-th iterative root (m > 2, m e N) of the mapping f if and only if for every non-

24



negative number k there applies either Ik =oo or dk|lk, where do = m, dkx = i(k e N), and my
My

denotes the greatest common divisor of the number m, which is coprime with the number k.

Theorem 9: Let f: X — X be the bijection such that for every k e No there applies either Ik =0

or Ik = oo (according to the notation of Theorem 8). Then f has the m-th iterative root for

every natural number m. For the orbits of this iterative root there also applies either 1, =0 or

= ooforall ke No.

Theorem 10: Every strictly increasing and continuous bijection R on R has iterative roots of
all orders.

Theorem 11: The strictly decreasing and continuous bijection of the set R has iterative roots
of all orders if and only if it has either infinitely many 2-cycles or none.

Theorem 12: Every strictly decreasing and continuous bijection R has iterative roots of all odd
orders.

3. USE OF ITERATIVE THEORY - EXAMPLES

All following poroblems are taken from publications [4] and [6].

Problem 1: At the 28" International Mathematical Olympiad in 1987 in Havana there was set
the following task:
Prove that there is no function f from the set of non-negative integers (N, = {0, 1, 2,...})

into itself such that f(f(n)) = n + 1987 for every ne N,,..

Let us use the iterative theory. The function ¢(x) = x + 1987 is not a bijection on the set N,,,

but it is injective. It does not have fixed points, its orbits are mutually isomorphic chains
bounded from below. There are 1987 chains, their least elements are 0, 1, ..., 1986. The vertex
graph is outlined in Fig. 5:

S S S G G

°0 o1 o2 6.6  ©1986
Fig. 5. Vertex graph of function ¢(x) = x + 1987.

The difficulty of this task is to prove that the function ¢ does not have the second iterative
root, i.e. that the g-orbits are not 2-mateable. The main idea of this proof is the fact that there
is an odd number of orbits. The orbits are not cyclic, therefore, according to Theorem 5, they
cannot by self-mateable. According to Theorems 5 and 6, for the existence of the second
iterative root the number of @-orbits have to be even (orbits can be mated only in pairs). This
is not true, so the function ¢ does not have the iterative root of order 2.

Note: With the help of iterative theory it is possible to generalize the Problem 1. The first
question is if the function ¢(n) = n + 1987 has any own iterative roots (of the order greater
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than 1). With respect to Theorems 5 and 6 it is obvious that we are searching the possibility of
the mating of the existing 1987 orbits. As 1987 is a prime number, the only possible own
iterative root is the root of order 1987. Then there exists the function f: Ny,— N, with the

property f *¥(n) = n +1987, ne N,. This function f is the successor function 1 on N,

defined by the formula f(n) = n +1. The next question is to find out if there are own iterative
roots of the function ¢(n) = n + ¢, n € N, ¢ € N. The vertex graph now contains just ¢

isomorphic orbits (chains bounded from below with the least elements O, 1,..., ¢ —1). These
chains have to be mated. Similarly as above, there always exists the iterative root of the order
¢ (which is the function f(n) = n + 1). Further, there always exist iterative roots of these
orders which are the dividers of the number c. Therefore, the iterative root of the order 2
exists if the number c is even. If the Problem 1 were set for the function f(n) = n + 1988, the
second iterative root would exist (further there would exist iterative roots of orders 4, 7, 14,
28, 71, 142, 284, 497, 994, 1988). Let us illustrate the whole situation for ¢ = 2.

Problem 2: Prove that there exist just two functions in N, which satisfy the formula
f5(n)=n+2.

The vertex graph of the function ¢(n) = n + 2 contains just two orbits (the chains of even and
odd non-negative integers). From the general theory there follows that the only possible own
iterative root is the one of the order 2. The orbits are not 2-self- mateable, so it is necessary to
mate them together. The decomposition of the orbit set to the blocks by two orbits is the only
one possible; the order of the orbits is important while mating them, so there are just two
possibilities of the mating. Both functions are represented by the following formulas and
shown in Fig. 6.
n-1 for nodd,

finN)=n+1,neN, f(n)= ,heN
1) <No R {n+3forneven. <

IG 17 6&-?\_‘7I7 7£A 6

0.

o4 o5 16595 Y G ¥
2 o3 28,593 Y W )
00 ol 0e. el 16-..2900

Fig 6. Solution of Problem 2.
Problem 3: Problem from the 20" International Mathematical Olympiad in Romania in 1978.

" Prove that there exist the function f: N — N satisfying the equation f(f(n)) = n’,

First, let us give the author solution without a commentary. Let there be the sequence ny, k =
1,2, .., where n,=2,n,=3, n,=5, .., which contains all natural numbers which are not the

squares of an integer, in the natural ordering. Let us set n, . = (ny )2m fork e N, m € N. Then
there holds n, .., =(n, 2" = ()T = (nk’m)z, and for any n > 2 there exists the only pair
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of numbers k, m with the property n = n, . Let us now define f(n) as follows: f(1) = 1, for k

odd f(n, ) =n for keven f(n )=n Then there applies fz(n) =n

k+1,m’ k-1,m+1"

The solution with the help of the iteration theory. Fig. 7 illustrates the vertex graph of the

function q(n) = n”in the set N. The vertex graph contains one isolated fixed point n = 1 and
countably many infinite chains bounded from below. For every me N, m > 2 there holds f

"(1) =1, so the fixed point x = 1 is always m-self-mateable. Further, the set of chains can be
decomposed into blocks by two, in each block the chains are 2- mateable. Therefore, the

second iterative root of the function q(n) = n> in N does not exist.

S S S

X I

2 3 5 6 7
Fig. 7. Sollution of Problem 4.

Properly speaking, the author solution is only a formal mathematical description of the
solution with the help of the vertex graph (by mating the chains).

Problem 4: Problem from the Mathematical Olympiad Correspondence Seminar 1983/84.

"Let f, g be mappings of the set A into itself. Let us call the function f as the n-th functional
rootg (n e N), if f n(x) = g(x) for every x e A. Let us define f1(x) = f(x), f"™(x) =f[f n(x)].

a) Prove that the function g mapping the set R" into itself and defined by the formula g(x) =

1 . .
— has infinitely many n-th functional roots for every n >2.
X

b) Prove that there exists the injective mapping R into R, which does not have the n-th
functional root for any n >2."

For the sake of authenticity, the wording of the task is in the original version, although now
the term functional root is replaced by the term iterative root.

a) The vertex graph of the function g(x) =l in R" contains one fixed point x = 0 and
X

uncountably many 2-cycles. For every n € N, n > 2 they can be decomposed into blocks by n
2-cycles, in every block the 2-cycles are mutually n- mateable. As the fixed point (in the
orbital structure represented by the loop) is self- mateable for any n, there follows the
existence of the n-th iterative root for every n. The above described decomposition of the set
of 2-cycles into blocks can be performed for any n in uncountably many ways, so for every n
€ N, n >2 there exist uncountably many n-th iterative roots.
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b) The vertex graph of the bijection contains only cyles and two-sidedly infinite chains. From
the general theory there follows that for the bijective mapping not to have any own iterative
roots there suffices if its set of orbits contains just one two-sidedly infinite chain. Let us
consider the function f(x) = x + 1 for every x € Z, f(xX) = x for xe R— Z. This mapping f
contains the only one two-sidedly infinite chain and infinitely many loops.

4. ITERATIVE ROOTS OF FINITE SETS TRANSFORMATIONS

Further, we will consider the question of the existence and construction of iterative roots of
the transformations of finite sets. We will show that in the case of finite sets it is not
necessary to apply the general theory (Theorems 1 — 12), but it is possible to proceed in a
different way. In the next text the finite set will be denoted as X. The monoid of all
transformations of the set X wil be denoted as T(X), the symmetric group (the group of
permutations) of the set X will be denoted as G(X).

Let us first give the characterization of finite sets which have iterative roots of all orders. It
can be easily proved (see e.g. [9]) that identity is the only permutation of finite sets with such
a property. The situation is more difficult for non-bijective mappings. Let us remind that h(x)
denotes the depth of the element x in the given f-orbit.

Theorem 13: (see [9]) Let X be a finite set. If the transformation f of the set X has an iterative

root of the order m = GCD {1,2,...,card X}, then there applies f = f (and therefore f is its r-th
iterative root for every r € N).

Proof: First, let us show that for every transformation g € T(X) there holds g2m = gm. As for

any x e X there holds h(x) <card X — 1, the element g" (x) belongs to the cycle of the mapping
g for m = NSN {1, 2,..., card X}. The order of an arbitrary cycle is at most equal card X, m is
the multiple of the order of all cycles, so for every x e X lying in some of the cycles of the

transformation g there holds gm(x) = X. Further there follows gzm(x) = gm[gm(x)] = gm(x) for
any x € X, so for every g e T(X) there holds g°" = g". Based on the premise about the
existence of the m-th iterative root of the transformation g there holds f = (gm)Z: gzm: gm: f.

Corollary: (see [9]) The transformation f of the finite set X has iterative roots of all orders if

and only if f = £ . Then it is its own iterative root of an arbitrary order. (The example of the
vertex graph of the transformation with the given property is in Fig. 8)

Fig. 8: Example of orbit types of set transormations f with property f 2= f .
Proof: Let f ’= f: then f" = f for every r € N, so f is its own iterative root of any order. On the

contrary, let f have iterative roots of all orders. Then specially it has the root of the order m =
GCDA{1, 2,...,card X} and from the previous Theorem there folows f 2=t
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In the next part of the article we will limit ourselves only to the question of the second
iterative roots of finite mappings. Such a restriction to the only order (m=2) enables the far
more accurate characterization of the appropriate final mappings. Let us remind that this
problem was dealt with mainly by M. Snowdon and J. Howie in [13]. Because of the didactic
character of the article and its extent, we will not give proofs to the theorems stated further.
All of them can be found in the above mentioned article [13]. Let us introduce the following
denotation. Let X be a finite set, f be a transformation on X. Then 7 is an equivalence relation

on X corresponding to f, so there applies: (x,y)e 7 < f(X)= f(y). The set G(X) with the
operation of the mapping composition is a symmetric group of the permutations of the set X.

If f € G(X), then also g:X— X with the property 92 = f has to belong to G(X) (see [14]). The
question of the existence of the second iterative roots in G(X) can be solved separately. Let us
remind that the orbit structure of each permutation f € G(X) contains only cycles. For any
transformation f e T(X) of the finite set X then holds that each its orbit is cyclic.

Theorem 14: Let X be a finite set. The element f € G(X) is the second iteration of some
permutation if and only if for every even number k the orbit structure of the permutation f
contains the even number of k-cycles.

Definition: Let f be the transformation of the finite set X. Let k be the least non-negative
integer with the property f k(X) =f k+1(X) = ... . Then this number is called the contract

coefficient of the transformation f and is denoted as cont f. The subset f k(X) c X is called the
stable range and is denoted as stran f. It is evident that cont f equals the maximum depth of
the element below the cycle in the orbit structure of the transformation f. Stran f is then the
union of the cycles of the transformation f, i.e. f Istran f is the permutation of stran f.

Definition: We will say that f e T(X) is the quasi-quadratic element in T(X) (or shortly the
quasi-quadrate), if the permutation f[stran f has the second iterative root in the group G(stran

f).

Theorem 15: If f € T(X) has the second iterative root in T(X), then f is the quasi-quadratic
element in T(X).

1 2 3 456 7 8 9
, the vertex
2 34 3 8 9 8 9 7

graph is shown in Fig. 9. Stran f = f 2(X) ={3,4,7,8,9}, cont f =2, flstran f = (3 4).(7 8 9).
As flstran f does not have the second iterative root (only one 2-cycle), f is not the quasi-
quadrate and therefore the second iterative root does not exist.

sz £y

1

Example 1: Let X = {1,2,...,9}, the mapping f = (

Fig 9: Vertex graph of mapping f from Example 1.

29



The previous Theorem 15 cannot be reversed. Nevertheless, the reversed theorem applies in
the special case.

Theorem 16: Let f € T(X), cont f = 1. Then f has the second iterative root in T(X) if and only
if f is the quasi-quadratic element in T(X).

Theorem 15 is only the necessary condition for the existence of the second iterative root,
Theorem 16 determines the necessary and sufficient condition with the premise cont f =1. The
general necessary and sufficient condition is given in the article [13]. We will now give this
condition and supply it with examples applying the general theory. Let us remind that h(x)
denoted the depth of the element x below the cycle and further that examining the existence of
the second iterative root of the transformation f can be performed only for quasi-quadratic
transformations (Theorem 15). For every discussed transformation f of the finite set X we can
suppose that f|stran f has the second iterative root.

Definition: Let f be the transformation of the finite set X, let x € X — f(X) be an arbitrary
element. Then the element y € X —f(X) is called y-dual to the element x, if there exists such
the second iterative root y of the set f|stran f for which there applies one of the following four
conditions:

W h)=hy) A y[F"0)] = f"0(y),
@ he)=hy) A y[F"0)] = f"V(x),
B) h(y) =h() +1A y["™0x)] = "9 (y),
@hy)=he) - 1A y[TOY)] = 1" (x).

It is evident that the relation y duality is symmetric; then it is possible to consider the elements
X, y as mutually y dual regardless of the order. All pairs of the y dual elements are the
elements of the set X — f(X), called basic elements. Precisely speaking, the element x is the
basic element if and only if it suffices the condition (f 1 ° f)(x) N f(X) = ¢.

Definition: We wil say that the transformation f of the finite set X is amenable if it is the
quasi-quadratic element in T(X) and if there exists the iterative root y of the restriction f|stran f
with the property that to each basic element of the set X there exists the y dual element.

We have already given the definition of the equivalence nf  corresponding to the
transformation f. The set of all basic elements can be decomposed into blocks of mutually
equivalent basic elements. All elements in each of these blocks have the same image, the
same depth below the cycle, and therefore the same y dual element. In the next considerations
we will always choose one element from each of the blocks of equivalent basic elements. The
set of the chosen elements will be denoted as B(f). Let y be the second iterative root of the
transformation fistran f. On the set B(f) let us define the mapping A:B(f) — X- f(X) as
follows: Every x e B(f) will be assigned the element which is y dual to it in X —f(X). The
mapping A will be called the dualizing mapping because in fact for each pair of elements (x,y)
€ A there holds that they are y-dual. Now, for each pair (x,y) € A let us denote two “iteration
routes”:

) = {0 ), (v, ), (), 7)), (F), F209), (F2(x), F200), .1
(xY)@ = {(y, x), (x, (y), (F¥), 7)), (F(x), F2¥), (F 20, 20, .}

30



As the set X is finite, the number of elements of the sets (x,y), (x,y)@ is finite. Let A be any
subset of the mapping A. Let us now define the relation Aa as follows:

Aa= [ Jxy) P O [ J(x,y)P) . If there exists the subset A < A, for which the relation Aa
(x,y)eA (X,y)ed-A

is unambiguous, then the mapping A is called the compatibly dualizing mapping.

Definition: Let us say that the transformation f of the finite set X is compatibly amenable if it
is amenable and there exists the compatibly dualizing mapping A.

Theorem 17: Let X be a finite set, let f €T(X). Then f has the second iterative root < f is
compatibly amenable.

Using this Theorem, the proof of which can again be found in [13], it is possible to decide
theoretically unambiguously if the given transformation of the finite set has the second
iterative root. However, the given theorem is quite complicated and its practical usage is
possible only for transformations of finite sets with a small number of elements. From the
didactic point of view, let us now show an example of the application of Theorem 17. We will
show that the obtained relation Aa is exactly the base of the second iterative root of the
transformation f, so it is possible to use Theorem 17 not only for solving the question of the
existence of the second iterative root, but also for its construction. The next Theorem is useful
while searching for the compatibly dualizing mapping A:

Theorem 18: a) The compatibly dualizing mapping A is bijective (it cannot be reversed).

b) Let X1, X2, Y1, y2 be different elements of B(f) such that every element y1, y» is y dual to every
element xi, x2. If the mapping A contains pairs (X1, y1), (X2, ¥2), (Y1, X2), (Y2,,X1), then it is not
compatibly dualizing.

Example 2: Let X = {1,2,3,...,18,19}, let the transformation f be determined by the matrix:
(12345867 8 9 10 11 12 13 14 15 16 17 18 19
341277 19 10 3 14 14 14 15 2 17 18 19 4 )

The vertex graph of the transformation f is in Fig. 10.

® 15 ®19

/&i ® 18

8 o ®17
11 12 13

e 16

Fig. 10: Vertex graph of mapping f from Example 2.

The transformation f is the quasi-quadratic element in T(X), because it contains just two
cycles of the order 2 (Theorem 14). These cycles are (1, 3), (2, 4), cont f = 4, stran f =
{1,2,3,4}, the iterative quasi-quadratic root y on stran f is defined by the matrix
(1 2 3 4

> 3 4 J. The classes of equivalent basic elements are {5,6}, {8}, {11,12, 13}, {16}.
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Each of the elements of the set {5, 6} is y dual to each of the elements {11, 12, 13}, elements
8 and 16 are also y dual. Therefore, the mapping f is amenable. The set B(f) will be chosen as

5 8 11 16
{5, 8, 11, 16}. The dualizing mapping A is defined by the matrix (11 16 5 8

us describe the routes for all pairs of elements of the mapping A. As we will soon find out, in
fact it is enough to describe the routes with the exponent (1):

(5,11)® = (11,5)® ={(5,11), (11,7), (7,14), (14,1), (1,15), (15,3), (3.2), (2,1), (1,4), (4,3)},
(11,5)® = (5,11)@ = {(11,5), (5,14), (14,7), (7,15), (15,1), (1,2), (2,3), (3,4), (4,1)},

(8,16) = (16,8)® = {(8,16), (16,9), (9,17), (17,10), (10,18), (18,3), (3,19), (19,1), (1,4),
(4.3), (3.2), (21)},

(16,8)® = (8,16)® = {(16,8), (8,17), (17,9), (9,18), (18,10), (10,19), (19,3), (3,4), (4,1), (1,2),
(2.3)}.

The relations (11,5)® a (16,8) are unambiguous, so we will denote A = {(11,5), (16,8)}. The
relation Aa ={(11,5), (5,14), (14,7), (7,15), (15,1), (1,2), (2,3), (3,4), (4,1), (16,8), (8,17),
(17,9), (9,18), (18,10), (10,19), (19,3)} is unambiguous, so A is the compatibly dualizing
mapping and f is compatibly amenable. The desired second iterative root g of the

transformation f is defined as v U Aa. It is again given by the matrix (and illustrated by
Fig. 11).

_(1234567 8 910111213141516171819J

]. Now let

2 3 4 1 14 14 15 17 18 19 5 5 5 7 1 8 9 10 3

4

1.<.\03
15@ 2 ®19
70 ®10
14 @ ®18
5 \\DG 9
17
11 12 13
®8
@16

Fig. 11: Vertex graph of mapping g. There holds g 2 =f.
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CONCLUSION

The article introduces the general theory of iterations of set transformations and gives basic
theorems describing the questions of the existence and construction of their iterative roots;
further there is stated the necessary and sufficient condition for the existence of the second
iterative root of mappings defined on finite sets. The text is complemented with the possible
usage of the above described theory while solving problems from the high school
mathematics. From the didactic point of view, it is possible to conclude that despite a certain
formal complexity (the proofs are quite complicated), these problems can be solved with
talented students, and that understanding of the essence of the given theory can develop the
students” mathematical abilities and thinking processes. Among others, the ability to
“deciphre” and study the formally complicated mathematical text is also extremely
significant. The familiarity with vertex graphs of mappings of finite sets (including vertex
graphs of functions defined on infinite sets) contributes to the better understanding of the
substance of relations, mappings and functions in the classical continuous approach.
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Aggregation-Disaggregation Approach for Computing the
Mean First Passage Times Matrices
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Abstract: The mean first passage times matrix (MFPTM) is one of the principal characteristics
of Markov chains. Direct algorithms for its computing are known. The first one was introduced
by C. D. Meyer and later M. Neumann brought some improvements. Other enhancements and
a reduction in the number of operations come from P. Mayer. The first and second approaches
require the inversion of a full matrix of size n or of two matrices of size n/2, respectively. The
third approach inverts a sparse matrix of size n with taking advantage of an appropriate LU
decomposition. A problem with efficiency occurs in particular in the case that only a small part
of the MFPTM is required, because all the elements of the matrix are necessary to be determi-
ned, in principle. An iterative aggregation-disaggregation method (IAD) is successfully used for
computing stationary probability distributions. This paper deals with the use of an IAD method
for computing a part of the MFPTM. Conditions under which the IAD method can be used, are
examined.

Keywords: Markov chains, mean first passage times matrices, iterative aggregation-disaggregation
methods, numerical methods.

Introduction

The basic motivation for the study of homogeneous Discrete Time Markov Chains (DTMC) is
a quantitative risk and reliability analysis for Railways signaling systems, see [0] and [4], [5]. The
probability characteristic of the transitions to these classes is the issue of the risk analysis. This is
the reason why it is necessary for us to study DTMC. In this paper we confine our considerations
to irreducible homogeneous finite DTMC.

We show some possibilities for computing stationary probability vectors in the case of an
irreducible transition matrix and one method for computing the MFPTM.

What is new in this paper: Firstly, generally use aggregation-disaggregation algorithm for
calculating columns of MFPTM (just aggregation-disaggregation approach is emphasized, co-
lumn access is already described in [8]). Further, aggregate calculation of a block of MFPTM in
case of a certain form of the transition matrix.

1 Basic Concepts and Characteristics of DTMC

The symbol E is used for the matrix of all ones and e for the column vector with all elements
equal to 1. The dimensions of E and e will always be clear from the context. Let for any matrix
Y € R" ", Y4 denote the n x n diagonal matrix whose diagonal entries are the corresponding
diagonal entries of Y.
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Definition 1 Let elements of T € R™ " be non negative and T e = e, wheree = (1,...,1)T €
R™. Then we say that T is a stochastic matrix.

Definition 2 A finite Markov chain is a stochastic process moving through a finite number of
states and for which the probability of entering a certain state depends only on the last state
occupied.

Suppose that {X,,|m = 0,1,...} is a finite homogeneous Markov chain on the states
St,..., 5. Let T € R™ " be its corresponding transition matrix. More information on sto-
chastic processes and Markov chains can be found in [1], [! |]. From our point of view we are
interested in times which are necessary for transitions from a state to a state.

Definition 3 Let T be a stochastic matrix. The vector m € R" is called the stationary probability
vector (SPV) if rt = 7' T, nle = 1.

The existence and uniqueness of SPV are studied in [1], [11].
We introduce the probabilities of changes from a state to a state in terms of matrices as
follows

Definition 4 We denote by fl(]l) the probability of the first come to the state j after leaving the
state 1 and it occurs exactly in | time steps. Let us denote by f;; the total probability of the

transition from the state i to the state j, i. e. fi; = > -, fi@. Let us define ¥ = (fi;)7;-, and
F) = (f‘(o)?jzl'

7

The correctness of the definition f;; follows from the independence of events with probabi-

lities represented by fi(;). Situation when f;; is equal to 1 occurs only in a special case. In our
case we are considering only irreducible chains, therefore, f;; is equal to 1 always occurs.
Let us introduce a model example illustrating the theme. Consider a chain as in Figure 1.

h b ¢

!

Fig. 1: The Markov chain.

with the transition matrix T
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a 0.2 - 0.8
b 0.3 0.7
c .1 (1)
d . 0.5 0.5
e 0.4 0.6 .
T= f 0.1 - 09 - -
g 08 - - - 02
h 1 -
1 1 -
Ji 1

Then the corresponding SPV is
= ( 0.039620, 0.007924, 0.016640, 0.028526, 0.019810,

0.316957, 0.356377, 0.071315, 0.071315, 0.071315) (2)

According to a well-known theorem of Kolmogorov, (T?);; is the probability that the tran-
sition from the 7—th state to the j—th state occurs just (but not necessarily for the first time) in
the p—th step. For [ < p, consider the probability that the transition from the state ¢ to the state
J occurs for the first time just in the [—th step and then in [ — p steps the transition follows back
to the state j.

We add it for /[ from 1 to p and then we can write (see also [ 1])

p
(Tp)ij = Zfz(jl) (T(p_l))jj
=1

which implies
p—1

fi(P) = (T%);; — Z fz(jl) (T(pil)> i

Jj
=1

It is in the matrix form

P
TP — Z FO (T(p—l))d 7 3)
1=1
p—1
F® — Tr _ Z FO (T(p*l))d ) 4)
1=1

The total probability of the transition from the state ¢ to the state j can be considered as the
sum of the probability of the transition from the state ¢ to the state j in one step and the sum
of probabilities of the transition from the state ¢ to the state k, different from j, in one step and
from the state k to the state j. Then we can write

[ij :tij+ztik ks )
Py

since T is the transition matrix of a homogeneous Markov chain and the formula (5) represents
one step of the chain applied from the state 7 to the state j.
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Rewritten in the matrix form, we obtain

F=T+TF - TFq=T(F — Fq) + T. (6)

If the transition matrix T is irreducible then F = E and it expresses the sure event. In other
words, any transition is possible.

Definition S We denote by m;; the mean first passage time of the transition from the state i to
the state j, i. e. m;; = Y -, lfl-(;). Let us define M = (my;)7;_;.
When we read Definition 5, from another point of view, we can see that each element 12,5, which
is called the first statistical moment of the transition, is equal to the weighted mean of the lengths

with their relative frequencies, which are their probabilities, as their weights.

In a similar way as for F in (6), we get a formula for computing the MFPTM in the matrix
form

M=T+T(F —-Fq)+T(M - M,y)

and if we apply the identity T 4+ T(F — Fq) = F from (6), we get

M=T(M-Mgy)+F. (7)

To our knowledge, if T is irreducible, i. e. F = E is the matrix of all 1s, the previous equality
is well known. For a stationary vector 7

mMgq =7F.

In case of T irreducible, the last expression is just the well-known renewal theorem. In such

case, there is mym; = 1,1. e.
1
Uy

According to Meyer [9], the mean first passage matrix IM (note that if there is necessary to
emphasize that M corresponds to the transition matrix T we use the notation M) is given by

M=[I-Q*+EQ}I" (8)
where Q = I — T, where Q7 is the group (generalized) inverse of Q, i. e.
QF=I-T)* =1I-T+er" ) ' —en"
and where II is the diagonal matrix whose diagonal entries are the corresponding entries of 7.

The mean first passage times matrix for our model chain is

DL . TR 00O Q0 o

a
25.240000

9.200000
11.000000
10.000000

7.000000

b
117.000000
126.200000
128.000000
127.000000
124.000000

c
199.333333
82.333333
60.095238
29.095238
116.190476

d
165.277777
A48.27TTTT
1.000000
35.055555
67.111111

e
119.200000
2.200000
4.000000
3.000000
50.480000

28.000000
30.000000
31.000000
32.000000
33.000000

145.000000
147.000000
148.000000
149.000000
150.000000

227.333333
229.333333
230.333333
231.333333
232.333333
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193.277777
195.277777
196.277777
197.277777
198.27777T7

147.200000
149.200000
150.200000
151.200000
152.200000




f g h i J
3.550000  5.055555 18.077777 17.077777 16.077777
12.750000 14.255555 27.277777 26.277777 25.277777
14.550000 16.055555 29.077777 28.077777 27.077777
13.550000 15.055555 28.077777 27.077777 26.077777
10.550000 12.055555 25.077777 24.077777 23.077777
3.155000 1.505555 14.527777 13.527777 12.527777
2.000000 2.804444 13.022222 12.022222 11.022222
3.000000  1.000000 14.022222 13.022222 12.022222
4.000000  2.000000  1.000000 14.022222 13.022222
5.000000  3.000000  2.000000  1.000000 14.022222

)

2 TAD Algorithm

We introduce an aggregation mapping

g:{1,...,N} = {1,...,n},

where n is the size of the coarse space.

The indices which are mapped to the same values of g define one aggregation group. The
optimal choice of mapping ¢ is difficult and often depends on further information about the
solved problem. Distinctions between two choices of g for the same transition matrix can be
substantial.

Consider the aggregation mapping

n <N,

g:{1,2,3,4,5} — 1,
g:8 — 4,

g:6— 2,
g:9—5,

g:7— 3,

g:10 — 6. (10)

By means of aggregation mappings we define the restriction and prolongation matrices.
The restriction matrix R € RV*" is defined by nonzero elements

Tg(i),i = 1,

. N
The restriction matrix to the model chain is

(11)

S OO oo
S O OO -
SO OO -
SO OO
OO OO
S O OO
O O = OO
O = O OO
— o O O O

_— o O O oo

000O0O0O0O0OO

The prolongation matrix S(x) is parameterized by a vector x € RY; the nonzero elements
of the matrix are .
(SE)igt) = R
! (Rx)g0)

it means that (S(x) z); = zg(:) i/ (RX)g0)-
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The prolongation matrix for the model chain is

0352113 0 0 0 0 0
0.070043 0 0 0 0 0
0.147887 0 0 0 0 0
0253521 0 0 0 0 0
0176056 0 0 0 0 0
S(x) = 0 10000 (12)
0 01000
0 00100
0 000710
0 00001

Let us denote by A(x) = R'T? S(x) the aggregated matrix defined by the vector x and by
the aggregation mapping g. Some properties of the matrix A (x) are introduced in the following
lemma.

Lemma 1 Let T be a stochastic matrix, let g be an aggregation mapping and x € RN such
that x > 0 and Rx > 0. Then the aggregated matrix A(X) is a column stochastic matrix. If the
matrix T is irreducible and the vector X is strictly positive, then A (X) is irreducible.

With the previous knowledge we can define the following IAD algorithm for an irreducible
stochastic matrix T and for a positive initial approximation X;y;;. Suppose that matrices W, and
W, form the regular splitting of the matrix I — TT. It means that I — TT = W; — Wy, where
W, is a M —matrix and where Wy is a nonnegative matrix.

Algorithm IAD (input: T, W1, W5, Xinit, €, ¢, S; output: x)
1.k :=1, X1 := Xinit

2. while || T x;, — x;|| > e do

3. x:=(W;'Wy)'x;

4. A(X):=RT'S(X)

5. solve A(X)z=zandelz =1

6. k:=k+1

7. x,=8S(X)z

8. end while

The convergence theory for IAD can be found in [7].

3 Alternative Computation of M

3.1 Algorithm for Computing M by Parts

This algorithm is included here for the sake of completeness. In full, this is introduced in [3].
Consider an irreducible stochastic transition matrix T of order n. We assume, without loss
of generality, that T has the partitioned form

T Tho
T= , (13)

T21 T22
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where T, and T, are square matrices such that the sum of their orders gives n and the other
blocks are submatrices of corresponding dimensions. A vector x € fR" is partitioned into blocks
x; and x5 conformably to partitioning of T'.

The Perron complement of T'; in T is given by
P(T/T11) = T1y + Ti2(p(T)L — Tas) " Ty, (14)

where p(-) denotes the spectral radius of a matrix. Note that from the well-known Perron-
Frobenius Theorem we know that p(T') = 1. (Since T is irreducible, p(T) > p(Ta), so that the
expression on the right hand side of (14) is well defined.) For more details see [3]. Note that as
T is supposed to be irreducible, then all complements are stochastic and irreducible matrices.

We denote the Perron complements P(T/T1;) and P(T/Ts;) by Pi and P,, respectively
(note that these matrices are of the same orders as T1; and T, respectively).
Recall from Meyer [10] that if &; is the stationary probability vector for P;, then

nm = &, (15)

where 1/, = el 7. Analogously for &;.
For the sake of simplicity in describing the method, assume that the transition matrix T is
partitioned as in (13) and assume that the mean first passage matrix M is partitioned conformably

as
M1 M,

M = . (16)
M21 M22

The following Theorem is based on Theorems 2.2 and 2.3 from [3].

Theorem 1 Let T € R™*" be a non-negative stochastic and irreducible matrix and let M be
its corresponding mean first passage matrix. Partition T as in (13). Then

My = n(Mp,) + Vi, Moy = 7 (Mp,) + Va,

where v, and 75 are determined via (15) and where V1 and V5 are the skew symmetric matrices
(of rank at most 2) given by

Vi=(I-P)#*T15(I—To) 'E— (I—P)*Ti(I-Ty) 'E)T, (17)
Vy=1—=P) Ty (I—Ty) 'E— (I-P)#Ty(I-Ty) 'E)T. (18)
Further
My = (I — Ta3) ' T12 [Mas — (Maz)a) + (I— To) ' E (19)
and
Mys = (I = Ty1) ' To[My; — (Myy)a] + (I—Ty) ' E. (20)

The proof can be found in [3].
The algorithm consists in two steps:

Step (i): Compute the diagonal blocks of IM. Taking the diagonal block M, as a represen-
tative, we see (from Theorem 1) that in order to find M;;, we must have v;, V; and Mp,. We
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first need P, from which we can find both &; and (I — P;)#. Having found (I — P;)#, we then
use it and &; to compute both V; (from (17)) and Mp, (from (8)).

An analogous set of computations can be performed independently in order to obtain 7, V5
and Mp,. With £ and & in hand, we use the fact that 1/; and 1/~, form, respectively, the
entries of the normalized left Perron vector of the 2 x 2 coupling matrix

f;r T e 51T Tise
C= . 21
f;r Ty e 55 Tye

Note that C = [A(7)]", when the aggregation mapping is

. {17...,711} — ]_,
9: {nmi+1,....,n} — 2

where n; denotes the size of M;.
Having thus found ~; and 5, we then compute M; and My,, according to Theorem 1.

Step (ii): Compute the off-diagonal blocks of M. From Theorem 1, this can be accomplished
once we have found both M; and M, see (19), (20).

3.2 Computing M by Columns

Now, we suggest a different approach; to compute each column of M separately and then to
apply the Sherman-Morrison-Woodbury formula. It is another variant of computing M, based
on the formula (32), also (23) and (24), which is proved in [8] and which consists in computation
by columns. An effective implementation is described in [&].

Even in the worst case, this algorithm requires just n> operations and further improvements
can be achieved if a sparse structure is available. Moreover, this approach gives an advantage if
some elements of M only are needed, then a column or some columns can only be computed.

Denote by M, the ¢:—th column of the matrix M. Rewriting (7) for the :—th column, we
obtain

where (T My); € R" is the i—th column of the matrix T Mg. We can write (22) as

PutT,, =Te; e;f. Then T,; is the matrix of the same size as T, but it has only one (the :—th)
nonzero column and then

Thus, we can write

and if we denote A, =1 — T + T,;, we get
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3.3 Aggregated Computation of a Block of M

Definition 6 [fthe graph of a transition matrix 'T is dichotomized by omitting a vertex into two
connected subgraphs, then such a vertex is called a cut point.

The vertex f in Fig.1 is an example of a cut point. If a matrix T contains a cut point in the sense
of Definition 6, then the individual blocks of the matrix M can be computed by aggregations.
InFig.1, let us consider the vertices a, b, . . . , j enumerated subsequently by numbers 1, 2, ..., 10.
Then the aggregation (10) assures that the parts of the matrices Ma (v in (31) and My,
from (9) corresponding to vertices f, g, h, 7, j (nonaggregated parts) are equal.
This fact can be generalized into the following Theorem, the proof of which comes from the
text.

Theorem 2 Let T contain a cut point. Consider the aggregation g such that the vertices of one
subgraph are joined with the cut point and the vertices of the other subgraph are not aggregated.
Then the part of the matrix M corresponding to the nonaggregated indices coincides with the
appropriate part of the original matrix M.

Furthermore, we formulate and prove a more general situation in which a cut point is a
particular case.

Suppose that matrix T € "> is partitioned as in (13), where T'(; € R™"*™ T 5 € R *"2,
Ty € R™*™ Ty, € R"™*"™ and where n = n; + ny. Further T = 0 and T e = e, where
e=(1,..., 1)T and T is a stochastic matrix (see Definition 1).

We suppose that the corresponding stationary probability vector 7 (see Definition 3) is blocked

conformably, i. e.
(%)
T = .
2

It is easy to see (from Definition 1 and Definition 3) the following important properties and
relations:

Lemma 2 [7 is true that

T, T
(o) = () (2 )

7TlT = WlTTn + W;FT21 (25)
7T;F = 7T1TT12 + 7T2TT22
e = The+Tpe
€ = Tye +Trpe

Definition 7 Matrix T, partitioned as in (13), has the so called BM property, if the rank of block
Ty is equal to 1, i. e.
T21 = UQV;F.

For the purposes of calculating block My,, we use matrices R and S in the following forms

R = : (26)



s 0
S = , 27)
01
wheres € R, s; = m;/ (Rm), fori = 1,...,n;, which corresponds to the aggregation descri-
bed in (10), seee. g. (11), (12).
Denote the corresponding aggregated matrix as

T,=S'TR", (28)

7TTT11 e 7T’1I‘T12 e
T, = e e .
Ty e Ty
Notice that T, is transposed to A (x) (see p. 40) and T, is a stochastic irreducible matrix (see

e. g [7D.

It is easy to see that the left eigenvector corresponding to eigenvalue 1 of the aggregated

matrix T, is
eTm
m, =
a 7_[_2

(and this vector is the SPV of the matrix T,).
Similarly as the Perron complement of T, in (14) we have the Perron complement of T
in the form

which is in more details

Py =Ty + Ty (I— T22)_1 T1o. (29)
Lemma 3 Let T have the BM property then the Perron complements Py and P,, coincide.
Proof: We know that

Py =To + Ty (I—Tyy) ' Tiy = To +upvl (I—Ty) ' Th.

Put
XT = VrlI‘(I — Tll)_lTlg.
Then
Py = Ty + upx’.
Similarly
1 T 1 T
Paz = Tao + Tore T 1T 2 =Ty + uvie T 1T =
my Tiie Ty e my Tiie Ty e
(1 - W) ! (1 - W) !
1 1
Let us denote
yT —Te 1 7T1TT12
o 7ITi e T
(1-pe) mie

and then we have
Paz = Too + UQYT-
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It follows from the theory of the Perron complements that the complements are stochastic mat-
rices and the corresponding eigenvector is up to a normative constant the vector mo. Thus

T T T

and
T T T T T T
7o T22 + Ty U2X = Ty TQQ + o U2y
7'('2TI_12XT = 7T2Tll2yT
0 = myupX' —mugy’”
T T T
0 = myuy (X -y )

and since 7y uy > 0 it is x = y. Then also Py = P,,,.

The principal result is formulated in the following theorem:

Theorem 3 Let T have the BM property (see Definition 7) then the blocks Moy and M 99 co-
incide.

Proof: Recall that (see Theorem 1)
My, = 7Mp, +V,
V, = W, — VVQT
W2 = (I — 732)# T21 (I — TH)_l e eT
WQ = (I — PQ)# UQ’U;P (I — Tll)il eeT

and then similarly

Ma2 = vVe2Mp, + Voo
Va2 Wa2 - W;PQ
W, (I - PaQ)# T (I - Tan)_l ee’

TT -1
We = (I—Pwo)uvie <1 _ 0o He) el

T

We know that Py = P, (from Lemma 3) and 72 = 7,2 and then it is also Mp, = Mp_,. We
—1

T
denote that r = (I — Pyo)* uy, @ = vI (I—Ty;) 'eand o, = vle (1 — %) and we
1
get

W, =rael, W, =roze’.

Now we verify that o = «,. Firstly we evaluate «,

-1 -1
T 7iTye v (7ie—mlTe vienie
o =vye|l— =v,e =

Tie e 7l (I—Ty)e’

From Lemma 2 we get

T T
U T21 =T (I—Tll) (30)
and then
_viemie viewmle 7le

Qg = = = .
7T;FT216 WEUQV?G ﬂ-;FUQ
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Now we evaluate «

a = vidI-Ty) le.
From the relation (30) we have
myupvi = m (I—Ty)
1
T T
= — I-T
Vi T, ™ ( 1)

and substitute it to the formula for . We get

= — I-T I-T = = .
o 7r2Tu27T1 ( 1) ( 1) e Ty «Q

Thus M22 = Magg.

Remark 1 If Ty; = uyv], Ty = uyvy, where uy = (0,...,0,1)T, uy = (1,0,...,0)T,
vi=(0,...,0,tn,11.2,)" Vo = (tnym141,0, . ..,0)T then the BM property transformes into the
cut point situation.

The mean first passage matrix to the aggregated matrix to SPV 7 is

8.8873 3.5500 5.0555 18.0777 17.0777 16.0777
28.000 3.1550 1.5055 14.5277 13.5277 12.5277
30.000 2.0000 2.8044 13.0222 12.0222 11.0222

Miamim = | 31000 3.0000 1.0000 14.0222 13.0222 12.0222 G
32.000 4.0000 2.0000 1.0000 14.0222 13.0222
33.000 5.0000 3.0000 2.0000 1.0000 14.0222
3.4 Aggregations for Column Computation
For arbitrary k—th column: we solve the equation
I — (T — Ty M =e, (32)
where T, M are the £—th columns of the corresponding matrices.
We apply the iteration process:
M,(CO) =e,
M = (T - T, ) MY +e. (33)

Since p(T — T.x) < 1, then the iteration process converges, but the convergence is slow. There
is possible to apply the following aggregation process to speed up the computation.

Algorithm: C = [R (I — (T — T.,))TS(r)]"=[R AT S(1)]T (see (23), (24))
Fori=1,..., consider the residuals: r; = e — [(I — (T — T.y))] MS),
Co; = [S(m)]" ' r;
MU = MO L RT o,
MO — M+
MU = (T =T, )M +e,j=1,...,s
M) — M),

The convergence of the algorithm is assured. We can state
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Theorem 4 There exists such s, that the algorithm converges.

The proof is clear from the text.

4 Cost Analysis

In this paper an overview of methods for computing the mean first passage times matrix is given.
The method introduced by C. D. Meyer (see [9]) requires approximately 4/3 n® operations and
the inversion of a large full matrix. Another access (shown in [3]) needs approximately 7/6 n®
operations and requires two matrix inversions of matrices of size n/2. The access presented by
P. Mayer requires not more than n® operations and requires the inversion of a matrix (but in case
when the transition matrix is a sparse then the inverted matrix is a sparse as well and the number
of operations needed can be further reduced).

A common drawback of all approaches is the necessity to compute entire matrix what is not
effective in particular when we are interested in a few of its elements and all the elements of the
matrix are useless. The processes presented in this paper eliminate this deficiency.

5 Conclusion

The possibilities of computation of a part of MFPTM using aggregation procedures are intro-
duced in this paper. This approach eliminates the need of inversion in particular of the block
I — T, which significantly reduces severity of computational processes. The stationary proba-
bility vector (SPV) is necessary to know but this vector can be effectively obtained using the
IAD algorithm presented here.
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Abstract: Direct Lyapunov’s method is applied to solve optimization problems for linear differential
equations with delay. Optimal control functions minimizing quality criteria are found.

Keywords: Lyapunov function, differential system with delay, optimal control function, quality cri-
terion.

Introduction

As it is well-known, there are two approaches to solving optimization problems in dynamic sys-
tems. The first approach was proposed by L.S. Pontryagin. His method is based on finding a fixed
control (a program control) for which the solution of the system described by differential equations
reaches a predetermined previous value and minimizes the integral quality criterion. The second ap-
proach consists in finding a control function in the form of a feedback such that the trivial solution
is asymptotically stable and simultaneously minimize the integral quality criterion. Being based on
the second Lyapunov method, this is a kind of a dynamic programming method (a combination of
methods in calculus of variations and Lyapunov functions method). Its founder is N.N. Krasovskii.
We refer, e.g., to [1, 3, 4, 5]. In this paper, the latter method is applied to linear differential systems
with delay.

1 Problem considered

Consider a control system described by a system of differential equations with delay
dx(t)

dt
where f: R" x R" x R™ — R™, f = (f1,..., fn), £(0,0,0) =0, (z,v,u) € D,

= f(x(t),z(t — 7),u(t,z)), (D

D = {(z,v,u) € R" x R" x R™t > to},
to € R, 7> 0,n > 1, m > 1 are natural numbers, and the undisturbed system

dx(t)
dt

:f(x(t>7x(t_7)70>' 2

We need to find a control function in the form of a feedback, i.e., u = u(t, ), such that a solution
x(t), t > to of system (1) corresponding to this control and to the initial function is asymptotically
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stable and the integral (often called quality criterion)

I= /Oow (x(t),x(t — 7),u(t,z))dt 3)

to

attains a minimum value. The function w(z, y, u) defined on © is assumed to be positive definite.

Let C = C([—7,0),R™) be the space of the continuous mappings from the interval [—7, 0)
into R". If A is any set in R", we will set C”(A) = C([—71,0), A).

Let C(D) be the space of the continuous mappings from the interval [—7, 0) into the set D =
{£ € R™: ||&|| < M}, M is a positive constant (or M = 00).

Letx: [to — T, oo) — R™ be a continuous vector-function, tg € R, and let 7 > 0 be a number.
For a given t € [ty, 00), we define a norm

lz(®)]- = eér[lfrgfo](\lw(t +0)))

where
Ja(s) | = max {ai(s)]}, s € to — 7, 00).

The following three definitions and Theorem 1 are taken from [2]

Definition 1 Ler a functional V: (a,00) x C*(D) — R be given. It is called positive-definite
if there exists a continuous nondecreasing function w: [0, M) — R, w(0) = 0, w(s) > 0 if
s € [0, M) such that

V(t,¥) = w(([v0)])
n (a,o00) x C*(D).

Definition 2 Ler a functional V : (a, 00) x C*(D) — R be given. V is said to have an infinitesimal

upper bound if there exists a continuous nondecreasing function W: [0, M) — R, W(0) = 0,
Wi(s) > 0ifs € [0, M) such that

Vi(t,y) < W(l[¢ll-)
n(a,00) x C*(D).

Definition 3 A positive-definite functional V : («, 00) X C(D) — R having an infinitesimal upper
bound is called a Lyapunov-Krasovskii functional.

Theorem 1 If there exists a Lyapunov-Krasovskii functional
V:(a,00) x CH(D) - R
and if V (t, z;) defines a nonincreasing function of t on [to, 3) whenever
z=z(to,p), t € [to — 7, )

is the noncontinuable solution of (2) through some (to, ) € (a,00) x CI(D), then the trivial
solution of (2) is asymptotically stable.
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Define an auxiliary function

dv(t,x
B (V,t,z(t), x4, u) :== (d—z;t>+w(x(t)’$(t_7)’u) 4)
where V' is a Lyapunov-Krasovskii functional and dV (¢, z;) /dt denotes the derivative of V' with re-
spect to ¢ along trajectories of system (1). The following theorem was motivated by a similar theorem
for non delayed systems [4].

Theorem 2 Assume that, for the system of differential equations (1), there exists a Lyapunov-Krasovskii
functional Vi(t, x;) having an infinitesimal upper bound and a function uy(t, x) such that
1. The function w(x(t), z(t — T),uo(t, x)) is positive-definite for every t > to, ||x|| < M, where
M is a positive constant.
2. B(V, t,z(t), x¢, up(t, z)) = 0.
3. BV, t,z(t), zy, u(t, z)) > 0 for any u(t, z) Z uy(t, x).

Then, the function uy(t, ) is a solution of the optimal stabilization problem and

/00 w(z(t), z(t — 1), ue(t, x))dt

to

- m&n [/Oow(x(t),x(t —7),u(t,z))dt| = Vo(to,x4,). (5)

to

Proof. The functional V; (¢, x;) satisfies all conditions of Theorem 1. For its derivative along
trajectories of the system (1), we have

Vo

i —w(z(t), z(t — 7),uo(t, x)), (6)

which means that it is a negative-definite function. That is why, for u = ug (t, x), the undisturbed
motion z(¢) = 0 is asymptotically stable and lim;_, ., z(t) = 0 for all initial conditions x (%) from
the region ||z(9)]||» < n, where 7 can be found from the equation

sup[Vo(t, @) |jz)), <n) < InE[Vo(t, 2e) it =n],

and h < M.

Now it is sufficient to show that (5) is true. The motion () satisfies condition ||z (t)||, < h <
M. Thus, for all ¢ > t,, the equation (6) holds. Moreover, from the property of asymptotic stability,
we have

lim Vy(t, xor) = 0. @)
t—o0

Integrating equation (6) along the motion z(t) over (to, o0), using (7), we obtain

Vo(to, zt,) = / w(wo(t), zo(t — 7),uo(t, z))dt. (8)
to

On the other hand, let © = w, (t, x) be an arbitrary function that is also a solution of the optimal

stabilization problem for the motion x(¢) = 0 and for initial conditions ||z (to)||» < 1. Assume that,

fort >ty — 7, x.(t) lies inside the region || (¢)||, < h. Then, by assumption 3, we get

% > —w(x4(t), T (t — 7), us(t, x)). 9)
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Integrating this inequality over (%o, o0) and using the property

lim Vi(t, 7.0) = 0 (10)
we obtain -
Valta, ) < [ wlan(t) .t = 7). wnlt,z))dr a1
to

A similar inequality can be obtained if the motion x.(t) goes out of the region ||z(¢)||, < h on an
interval. In this case, we have the following situation. Let £; > ?; be the moment of time, when the
motion z,(t) goes back into the region and stays in it for all ¢ > ¢;. Then, from that moment on,
equation (9) will hold for x,(¢). Integrating this inequality over (¢;, 00) and using the property (10)
again, we obtain

Vo(t, Tuy) < /Oow(x*(t),x*(t — 7T), ux(t, z))dt. (12)
t
Since x(to) satisfies ||z (to)||- < n, Wherle n is sufficiently small, we have
Vo(to, 1,) < Vo(ti, 7.(t1)), (13)
and, due to assumption 1, we get
/OO W@ (t), 2 (t — 7), us(t, z))dt < /OO W(i(t), 2 (t — 7), us(t, x))dt. (14)
t1 to

From (12)—(14), we derive (11), and from (8), (11) we get (5). [

2 Linear equations

Consider linear scalar equations with constant coefficients and a single delay
dx(t)
dt

where a, b, ¢ are real constants, 7 > 0 is a delay and u(z(t)) is a control function.
Together with equation (15), we will consider a quality criterion (3) with £, = 0 and

w(z(t),z(t —7),u) = az?(t) + 2Bz(t)x(t — 1) + y2*(t — 1) + du*(x(t)),

= ax(t) + bx(t — 7) + cu(z(t)), (15)

i.e., (3) being a quadratic criterion
I / [0 (t) + 28(t)x(t — 7) + 1a2(t — 7) + 6u?(x(t))] dt, (16)
0

witha > 0, ay — 32 > 0,60 > 0.
Theorem 3 If

Bb <0 (17)
and
b(a+7) = 28, (18)
then the optimal stabilization control function
c
uo(a(1)) = 25 (1) (19)

exists.
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Proof. We utilize Theorem 2. Define a Lyapunov-Krasovskii functional
t
V(t,x,) = ha*(t) +/ dz*(s)ds, h >0, d > 0. (20)
t—1

Then, in accordance with condition 2 of Theorem 2, we analyze the expression B given by (4), i.e.,
B (V,t,x(t), ¢, u) = 2hx(t)[ax(t) + bz (t — 7) + cu(z(t))]+
+d[2?(t) — 2%(t — 7)] + az?(t) + 282 (t)x(t — 7) + y2*(t — 7) + du*(x(t)) = 0.
Simplifying the last expression, we get
B(V,t,x(t), 2, u) = (2ha + d + @)2*(t) + (y — d)2*(t — 1)+

+(2hb + 28)x(t)x(t — T) + 2hex(t)u(x(t)) + du?(z(t)) = 0.

This equation will be satisfied if

2ha + d = —a, 21

d=r, (22)

hb = —33, (23)
2hex(t)u(z(t)) = —ou?(x(t)). (24)

Condition (23) is valid because of (17). Substituting (22) and (23) into (21), we get condition (18).
From (24), we obtain an optimal control in the form

up(z(t)) = —Q%x(t) = 2f—§x(t).

O
Example 1 Consider equation (15) witha = —2, b= —1,c =1, i.e.,
(t) = —2x(t) — x(t — 1) 4+ u(t)

with a quadratic quality criterion (16) with« = 2 > 0, 8 = 1, v = 2,0 = 1 > 0, (here
ay—f2=3>0)ie,

I= /00(2:32(25) +22(t)w(t — 1) + 20%(t — 7) + uP(t))dt.

Since fb = —1 < 0and b(a + ) = 2af = —4, all assumptions of Theorem 3 are true. By
formula (19), the optimal stabilization control function
up(z(t)) = 2@x(t) = —2z(t)
b
exists.
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3 Linear systems

Consider linear systems with constant coefficients with one constant delay

dx(t)
dt

= Aoz (t) + Ajx(t — 7) + bu(z(t)), (25)

where Ay, Ay are n X n constant matrices, b € R", u(z(t)) € R, and a quality criterion (3) with
to = 0 and

w(z(t),z(t —7),u(t,r)) == 27 (t)Criz(t) + 27 (t)Craz(t — 7)+

a7 (t — 7)Cor2(t) + 27 (t — 7)Cox(t — 7) + du?(x(t)),

where C}1, C, Co1, Cyy are n X n positive-definite matrices, Cy; and Cyy are symmetric, Cy; = C7,
and d > 0, i.e., (3) is a quadratic criterion

I= [ st + () Cuatt - )+

2" (t — 7)Cona(t) + 2" (t — 7)Cooz(t — 7) + du®(z(t))] dt. (26)

Theorem 4 Assume that there exists a positive definite symmetric matrix H satisfying Lyapunov
matrix equation

ATH + HAy = —Cyy — Cos. (27)
If, moreover,
ATH = —Cy, (28)
the optimal stabilization control function
up(z(t)) = —ngHx(t) (29)

exists.

Proof. We utilize Theorem 2. Define a Lyapunov-Krasovskii functional
t
V(t,x,) =27 (t)Hx(t) —I—/ 27 (5)Gx(s)ds,
t—1

where H, G are n x n positive-definite matrices. Then, in accordance with condition 2 of Theorem 2,
we analyze the expression BB given by (4), i.e.,

B(V,t,x(t), 2, u) = [Aox(t) + Ajz(t — 7) + bu(z(t))]" Hz(t)
+ ot () H[Aox(t) + Az (t — 7) + bu(z(t))]+
+ 27 (t)Ga(t) — 27 (t — 7)Ga(t — 7)
+ 2T () Cra(t) + 27 (1) Craz(t — 7) + 27 (t — 7)Corz(2)
+ 27 (t — 7)Corz(t — 7) + du®(x(t))

Il
e
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Simplifying the last expression, we get

B (V,t,x(t), x¢, u)
+ 27 (t — T)[ATH + Co)z(t) +

=2l (O)[AFH + HAg + G + Cyylz(t)+

a" (t)[HA; + Cpo)z(t — 7)+

(t—T)[CQQ ] (t—7'>+
+ b u(x () Ho(t) + 27 () Hbu(z(t)) + du®(x(t))
This will hold if
ATH +HAy = -Cy — G,
ATH = —Cy,
HA, = —Chy,
G = Oy,
u(z(t)[b" Ho(t) + 27 () Hb) = —du?(z(t)).

Equation (30) is valid due to (33) and (27). Equations (31) and (32) hold due to (28).
From (34), we obtain an optimal control in the form

uo(z(t)) =
0J

Example 2 Consider system (25) with n = 2 and

—1
(s

where € is an arbitrary constant, i.e.,

Dol

—ngHx(t).
i)

E1(t) = — 21(t) — Saa(t —7) + cwa(t — 7) + buu(t),

2

() = — m(t) — %@(t — )+ boult)

with a quadratic quality criterion (26) with

o 1 6 [ C11
(5 1) ) Cl2 - (621

ie.,

+ ozt —T7), 22t — 7)) (CH

C12

(@1 (t = 7),22(t — 7)) ((1) (1)) (2
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C21
C22

C12 C11
5 C(21 =
C22 C12

= [ oo (5 5) () + o0 (2
) (0)

(t—
(t—

Co1 . 1 0
CQZ) ) 022 - (O 1> )
612) (.%'1 (t — T)
Co2 Iz(t — T)

:;) + duQ(t)] dt.

)

0.

(30)
€1y
(32)
(33)
(34)



We assume that J is a constant such that
6] <1 (35)

We show that all assumptions of Theorem 4 are true. From equation (27), we get
—1 0 hu h12 + hn hlg —1 0 _ 1 6 . 1 0
0 —1 h21 h22 h21 h22 0 —1 o 0 1 0 1/)°

Simplifying, we obtain
H — hn h12 . 1 5/2
o hgl h22 - 6/2 1 '

Matrix H is a positive definite symmetric matrix if |0| < 2. This inequality is valid due to (35). The
matrix Ch1 is positive definite, too. Consider equation (28). In our case, we get

(7 ) (e )= (0 2)

Coy = (5/1/3 . 1/25—@6/2) ’

and

Since Cy5 = CY,, we get

5/4 1/2—26/2

Obviously, C1, Cs1 are positive definite matrices for an arbitrary . The matrix Cyy is positive
definite as well. So, all assumptions are fulfilled and Theorem 4 is applicable. By formula (29), the
optimal stabilization control function

iy — (1/2 §/4—¢ >

wlal) = =507 Halt) =~ n.00) (55, 1) att)

exists.

4 Conclusion

The paper applies a method developed by N.N. Krasovskii to solving optimal stabilization problems
for differential equations and systems with delay. This method makes it possible to find a control
function in the form of a feedback such that the zero solution of a given equation or system is asympto-
tically stable and, simultaneously, an integral quality criterion attains a minimum value.
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Abstract: We study controllability and stability properties of dynamical systems when actuator
or sensor signals are under attack. We formulate a detailed adversary model that considers
different levels of privilege for the attacker such as read and write access to information flows.
We then study the impact of these attacks and propose reactive countermeasures based on game
theory.

The primary line of defense for any system is its proactive security mechanisms. Therefore,
in practice we must use the threat model to identify the most valuable targets for an adversary
and invest in protecting them.

We consider open-loop solutions. To find the necessary conditions for optimality of the sit-
uation we need to use Pontryagins minimum principle.

Keywords: stability,optimality, security of dynamical systems, actuator or sensor signals, attack,
information war.

1 Introduction

We study controllability and stability properties of dynamical systems when actuator or sensor
signals are under attack. We formulate a detailed adversary model that considers different levels
of privilege for the attacker such as read and write acceass to information flows. We then study
the impact of these attacks and propose reactive countermeasures based on game theory.

The security of cyber-physical control systems has received significant attention in the last
couple of years [1,2]. The primary line of defense for any system are its proactive security
mechanisms. Therefore, in practice we must use the threat model to identify the most valuable
targest for an adversary and invest in protecting them.

If an attack is detected, the defender can respond with different actions. Some of the possible
responses include reconfiguration of the system, attack isolation, of even a system shutdown (for
safety reasons). In this work we are interested in defenses that respond to attacks by changes
in their control actions; thus creating a game-theory problem where the actions on the players
are the control signals each of them has assess to. In particular, we assume that if the system
is not under attack, the system will operate with a vanilla control signal u(t) ; however, when
the system detects an attack, in chages to a reactive control signal u,(t) to maintain the system
under the best possible conditions. This creates a differential game between the defender and
the attacker. We use a recept model for data integrity attacks in demand-response programs for
the smart grid [3]. The model considers actuator attacks as an aggregate effect for multi-agent
systems that all receive the same input control signal.
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2 Statement of problem

May be the most general framework in control system is the theory of Linear Time Invariant
state space system [4]. In this setting we consider a system of linear differential equations

z(t) = Ax(t) + Bu(t) (1)

y(t) = Cz(t) + Du(t) ()

where (1) € R" is a vector of phisical quantities representing the state of the system at time
t,u(t) € RP is the control input at time ¢, y(¢) € R" is a vector of sensor measuarements at time
t,and A,B, C, D - matrics representing the dynamics of the system.

2.1 Control and security properties

Similar to security properties such as confidentiality, integrity, and availiability, there are several
control properties that asystem designer or plant operators would like to maintain,even under
attack. In the theory of linear state space systems, two dual properties are controllability and
observability.

Controllability is an important property of a control system, and the controllability property
plays a crucial role in many control problems, such as stabilization of unstable systems by feed-
back, or optimal control. Controllability means that the state of the system can be driven to any
arbitrary place by using the manipulated variables.

2.2 Attacking Controlability

We define an attack model for control systems containig three part: goal of the attacker,offline
information,and online information. While in general setting an attacker can have many different
objectives, in this paper we focus on attackers that try to manipulate the controllability or stability
of the system. Using the attacker model , we turn to problem of how controllability and stability
can be attacked. This anaysis can be used for risk assessment by identifying the resiliency of the
system to attacks or to identify the actuators and sensors that are most valuable to the system.

Let us consider one of the interesting and general case system (1) (Attacking Controlability
with u(t)): the linear control system

P _ A cnx )+ Br.ew)U) ®)
on the probability basis (2, T,P,F = {F; : ¢ > 0}) and together with (3) we consider the
initial conditions
X(0) = p(w), 00— R

The coefficients of the system are semi-Markov coeflicients defined by the transition intensities
Gok(t),, k =1,2,---  n, from state 6y, to state 6,. We suppose that the vectors U (¢) belong to
the set of control U and the functions g (), a, k = 1,2, -+, n, satisfy the conditions [8]:

Goi() > 0, /Oooqk@)dt:l, 2 =Y qult)
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If 15, (t) denotes the probability of the event that no jump takes place during the interval (¢;,¢;11),
provided that the process jumps to the state ¢j, at time ¢;, then

o0
w) = [ adr k=12 @)
t
In our considerations, it will be convenient to denote the block-diagonal matrix,

W (t) = diag(11(t), 1ha(t), - -+, Un(t)). (5)

Definition 1. Let the matrices Q(t,£(t)), L(t,&(t)) with semi-Markov elements be symmetric
and positive definite. The cost functional

7= [ (X 0QM.0)X (0 + U OLELOU ) dr ©
0
defined on the space C' x U, where {-) denotes mathematical expectation, is called the quality
criterion.
Definition 2. Let S(t,£(t)) be a matrix with semi-Markov elements. The control vector

U(t) = S(t,&(t)X(¢) (7

which minimizes the quality criterion J (X, U) with respect to the system (3) is called the optimal
control.

If we denote
G(t,E(1)) = A(t,£(1) + B(1, () S(1,£(1)),
H(t,¢(t) = Q(t, ¢(t) + 57(t, ¢(¢)) L(¢, ¢(t)) S(¢,¢(1)),
then the system (3) can be rewritten to the form

X (#)
3 G(t,§(t) X (1) (8)

and the functional (6) to the form

J= /OOO <X*(t)H(t, §(t))X(t)> dt. ©)

We suppose also, that together with every jump of random process £(t) in time ¢;, the solu-
tions of the system (8) submit to the random transformation

X(t]+0):CSkX(t]—O), S,k‘:l,Q,"'n,

if the conditions &(¢; + 0) = 6, £(¢t; — 0) = ) hold.
Definition 3. Let ay(t), k = 1,--- ,n, t > 0 be a selection of n different positive functions.
If €t; +0) =6, £(t; —0) = 6k, s,k = 1,---n, and for t; < t < t;4 the equality
a(t,&(t) = 0s) = as(t —t;) holds, then the function a(t,&(t)) is called semi-Markov function.

The application of semi-Markov functions makes it possible to use the concept of stochastic
operator. In fact, the semi-Markov function a(t, £(t)) is an operator of the semi-Markov process
&(t), because the value of the semi-Markov function a(t,£(t)) is defined not only by the values

t and £(t), but it is also necessary to specify the function a(¢), t > 0 and the value of the jump
of the process £(t) in time ¢; which precedes the moment of time ¢.
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2.3 Stability properties

Another impornant property of control system is a stability. Several different stability definitions
are useful. Here, we recall the mean stability and the mean square stability definitions, the
L5 stability given in [5], and the classical definition of asymptotic stability.

Definition 4. The trivial solution of system (3) is said to be mean square stable on the interval
[0,00) if for each ¢ > 0 there exists 6 > 0 such that any solution X (t) corresponding to the
initial data X (0) exists for all t > 0 and the mathematical expectation

EW{|X®)|*} <e whenever t>0 and | X(0)| < 6.

The mean stability of the zero solution of system (3) is defined in much the same way with
only || X (¢)||? being replaced by || X (¢)]|.

Several different stability definitions are useful. Here, we recall the mean stability and the
mean square stability definitions, the L stability given in [5,7], and the classical definition of
asymptotic stability.

Definition 5. The trivial solution of system (3) is said to be mean square stable on the interval
[0,00) if for each ¢ > 0 there exists 6 > 0 such that any solution X (t) corresponding to the
initial data X (0) exists for all t > 0 and the mathematical expectation

EW{|X®)|?} < whenever t>0 and | X(0)| < 6.

The mean stability of the zero solution of system (3) is defined in much the same way with
only || X (¢)||* being replaced by || X (£)]].

Definition 6. The trivial solution of the differential systems (3) is said to be Ly stable if the
integral

/ T EO{X (8]t (10)
0

converges.

3 Main results

The optimal control U (t) for the system (3) has some special properties and the equations de-
termining it are different from those given in the previous section in case the coeflicients of the
control system (3) have special properties or intensities g (t) satisfy some relations or some
other special conditions are satisfied [10,11,12]. Some of these cases will be formulated as
corollaries.

Theorem 1. Let the control system (3) with piecewise constant coefficients have the form

P _ Aew)x () + BEDU ) an
Then the quadratics functional
v | (X OQUEWNX () + U OLENUW) ) dr (12)
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determines the optimal control in the form

U(t) = S(t,€(1) X (1),

where
S(t,&(t) = Skt —t;)

and the matrices Si(t) satisfy the equations

Sp(t) = —L'BiR(t), k=1,2,--- ,n (13)
lf tj <t< tj+1, f(t) = Gk
The matrices Ry(t), k = 1,2,--- ,n are the solutions of the systems of the Riccati type equa-
tions:
dRy(t .
;t( ) - ALRi(t) — Ri(t) Ay,
U (t
+ BB BiRA(E) — 2D Ry (1)
Wy (t)
& (Jsk(t)
— . k=1,---,n. 14
; \Ijk(t> CskRS(O)OSk) 9 9 n ( )

Remark 1. In the corollary we mention piecewise constant coefficients of the control system
(11). The coefficients of the functional (12) will be piecewise as well, but the optimal control is
unstationary.

Corollary 1. Let us assume that

\Ij/
k(t) = const, QSk(t
Wy (1)

)
=const, k,s=1,2,--- ,n. 15
Tu(t) (15)

Then the optimal control U (t) will be piecewise constant.

Taking into consideration that the optimal control is piecewise constant, we find out that the
matrices Ry(t), k =1,2,--- ,nin (13) are constant, which implies the form of the system (14)
is changed to the form

* —1 px* \Ilﬁc (t)
Qr + AkRk + R A, — RkBkLk B Ry + \If—(t)Rk(t)
k
(16)

t)

The system (16) has constant solutions Ry, kK = 1,2, --- , n, if conditions (15) hold. Moreover,
if the random process £(t) is a Markov process then the conditions (15) have the form

+§:\Ifk( G RCsp, =0, E=1,--- n.
=1

V()
Uy (t)

QSk(t>
Wy (1)

= ay = const, =ag, =const, k,s=1,2,--- n, k#s,
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and the system (16) transforms to the form

Qr + ApRy + Ri Ay — RiBo L' BiRe + Y agCyRCo =0, k=1,--- |n
s=1
for which the optimal control is

U(t) = S(E®)X(), SOk) =Sk Sp=—L'BiRy, k=12 n.

Corollary 2. Let the state 0, of the semi-Markov process £(t) is not be longer than Ty > 0. Then
the system (12) has the form

vi(z) = 2" Crx

:/OTS (X;(t)( +quk )CaCs Csk)Xk(>

(17)
+ U,:(t)\llk(t)Lk(t)Uk(t)> dt, k=1,2,--- n.
Because
K (Ts) = Wy(t)Rs(t), s=1,2,--- n,
then

K(Ty) =0, s=1,2,--- n. (18)
In this case, the search for the matrix K(t), s = 1,2,--- ,n in concrete tasks is reduced to
integration of the matrix system of differential equations (6) on the interval [0, 7] with initial
conditions (18). In view of Wy (7y) =0, s = 1,2,--- ,n, we can expect, that every equation

(11) has a singular point ¢t = T. If W4(¢) has simple zero at the point t = Ty, then the system
(12) meets the necessary condition

U ( +quk s)CrRs(0)Crs =0, s=1,---.n

for boundary of matrix R,(¢) in the singular points.

4 Model problem

Let the semi-Markov process () take two states 01, 02 and let it be identical with the Markov
process described by the system of differential equations

dp: (t)
dt

dt

We will consider the L,-stability of the solutions of the differential equation

dx(t)
dt

= —Ap1(t) + A\pa(2),

= Ap1(t) — Apa(2).

= a(&(0)z(t), a(br) = (19)
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constructing a system of the type (14) related to the equation (19). The system is
c; =1 +/ e?@2t \e M, dt, o =1 +/ 21t \e Moy dt
0 0

and its solution is

N ()\—al) ()\—QGQ) i ()\—CLQ) ()\—Qal)
C1 = ’ Cy = :
2&1@2 — /\(CL1 + CLQ) 2@10,2 — /\((11 + CLQ)

The trivial solution of the equation (19) is Ls-stable, if ¢; > 0 and ¢, > 0. Let the intensities of
semi- Markov process () satisfy the conditions

qui(t) =0, gu(t) =0, gu(t) =A™ =0, qa(t) — I =0

Then, using the Theorem 1, the conditions
1— cl/ qu1(t) e dt — C2/ (qgl(t) — )\e’)‘t> e?2tdt > 0,
0 0
1-— cl/ (qlg(t) — /\e_’\t> e tdt — 02/ qaz(t)e*™2tdt > 0.
0 0

are sufficient conditions for the L,-stability of solutions of the equation (19).

Threat modeling is a procedure for optimizing network security by identifying objectives
and vulnerabilities, and then defining countermeasures to prevent, or mitigate the effects of,
threats to the system. In this context, a threat is a potential or actual adverse event that may be
malicious (such as a denial-of-service attack) or incidental, and that can compromise the assets
of an enterprise.

Security threat modeling, or threat modeling, is a process of assessing and documenting a
system’s security risks. Security threat modeling enables our to understand a system’s threat
profile by examining it through the eyes of our potential foes. With techniques such as entry
point identification, privilege boundaries and threat trees, you can identify strategies to mitigate
potential threats to your system. Our security threat modeling efforts also enable your team to
justify security features within a system, or security practices for using the system, to protect our
corporate assets.

There are some aspects to security threat modeling( with example in economics situation):

1. Identify threats. For example, our system’s ordering module interacts with the payment
processing module. Anybody can place an order, but only manager-level employees can credit a
customer’s account when he or she returns a product. At the boundary between the two modules,
someone could use functionality within the order module to obtain an illicit credit.

2. Understand the threat(s). To understand the potential threats at an entry point, you
must identify any security-critical activities that occur and imagine what an adversary might do
to attack or misuse our system.

On questions such as "How could the adversary use an asset to modify control of the system,
retrieve restricted information, manipulate information within the system, cause the system to
fail or be unusable, or gain additional rights.

In this way, we can determine the chances of the adversary accessing the asset without being
audited, skipping any access control checks, or appearing to be another user. To understand
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the threat posed by the interface between the order and payment processing modules, we would
identify and then work through potential security scenarios.

For example, an adversary who makes a purchase using a stolen credit card and then tries to get
either a cash refund or a refund to another card when he returns the purchase.

3. Categorize the threats. To categorize security threats, consider the STRIDE (Spoofing,
Tampering, Repudiation, Information disclosure, Denial of Service, and Elevation of privilege)
approach. Classifying a threat is the first step toward effective mitigation.

For example, if we know that there is a risk that someone could order products from our com-
pany but then repudiate receiving the shipment, we should ensure that you accurately identify
the purchaser and then log all critical events during the delivery process.

4. Identify mitigation strategies. To determine how to mitigate a threat, we can create a

diagram called a threat tree. At the root of the tree is the threat itself, and its children (or leaves)
are the conditions that must be true for the adversary to realize that threat. Conditions may in
turn have subconditions.
For example, under the condition that an adversary makes an illicit payment. The fact that the
person uses a stolen credit card or a stolen debit/check card is a subcondition. For each of the
leaf conditions, we must identify potential mitigation strategies; in this case, to verify the credit
card using the some verification package and the debit card with the issuing financial institution
itself. Every path through the threat tree that does not end in a mitigation strategy is a system
vulnerability.

5. Test. Our threat model becomes a plan for penetration testing. Penetration testing inves-
tigates threats by directly attacking a system, in an informed or uninformed manner.
Informed penetration tests are effectively white-box tests that reflect knowledge of the system’s
internal desig, whereas uninformed tests are black box in nature.
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Abstract: The paper presents usage of PSE graphical environment based on the Python
programming language for creating simple educational experiments. PSE environment allows
solving problems using graphical components - a high level blocks with defined properties as
well as a creation of user-defined components. With the help of simple and readily available
hardware components such as the Arduino, it is possible creating demonstration experiments.
In the second part of the paper we will show some possibilities for the demonstration of
solutions of linear and nonlinear differential equations with examples of classic bifurcation
diagrams. By way of simple examples, are shown basic characteristics of Z-transform and its
use in the implementation of digital filters.

Keywords: programming, education, python, simulation, numpy, scipy, matplotlib,
difference equations

INTRODUCTION

PSE (Python Simulator Editor) is an open-source block-oriented simulation environment
developed in Python, primarily focused on the creation of general simulation models. The
environment uses the extensive infrastructure of Python [1], PyQt application framework [2],
libraries for scientific computing NumPy and SciPy [3] and visualization library Matplotlib
[4]. In the development of PSE environment was placed a major emphasis on its openness, the
user can modify the environment, expand and add new components, and thus it differs from
other commercial and open alternatives.

The environment allows you creating simulation models in the form of diagrams by
the transfer of mathematical relations into visual form through components that contain
individual algorithms to transform information and oriented connections between individual
components in Fig. 1. Connections in each simulation step move data among components and
the information can be scalar or vector.

67



RK2 Stop Time=10 H(S) _ Xi(s) 1

Pulse Width=50
Frequency=0.5 §
Amplitude=1 ~

P - —[ 10 >—

|
' ' .-l‘.'e |J'|\- U'f&-‘ |J'|\-' ‘_.!“.1_..
T O T
.- :i_:—/} _[S P o—[‘g P —l 1099_/:::— . | ‘ ' ‘ ‘lﬁ

| step=0.005 ~ Y(s) 0.001s? +0.01s+1

-~

L | ks ki >

Fig. 1. A typical diagram of the PSE environment. The implementation of the transfer
function and the time domain response to an input signal, simulation algorithm is Runge-

Kutta method of the second order.

The components are arranged in libraries, classed according to their functionality or
meaning. Typical library components include:

Sources - sources of information - generators, data from a file, retrieve information
from connected devices and the Internet

Sinks — information consumers- write to a file, console output, graphs, send
information into the Internet

Control — components for communication control

Linear — components for linear transformation of information

Nonlinear — components for non-linear transformation of information

Signal — components for editing connections, aggregation of scalar connections to
vector and vector connections to scalar

Discrete — discrete and logic components

Interactive — components for interactive control of the diagram during a simulation

Components of all the groups in the diagram can be combined freely. Individual library
components for better orientation in the diagram graphically distinct. The simulation of larger
diagrams is possible by creating separate diagrams — blocks, and use them in the simulation as
separate components. The blocks can be used as separate components as they are expanded in
the diagram as a macro with a separate namespace, Fig. 2., Fig. 3.

L ' blok_01.pse
-
N\ [/ —H

¥

Fig. 2. The diagram used to form the block. It does not contain the simulation control

component
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blok_01.pse

O m X
-
i
c
L ;

Fig. 3. Use of the block from Fig. 2. in a simulation. The block is identified by the name of
the diagram from which was created and it is possible to use it repeatedly

1. ELEMENTARY INTERACTIVE DEMONSTRATION IN THE PSE
ENVIRONMENT

There are used only the properties of the PSE environment, user interaction with a
simulated process if necessary, is conducted through any of the standard user interface
components (Button, Slider, Dial, etc.) inserted into the diagram. The purpose of the
simulation is the demonstration of the topic with the possibility of changing the parameters of
the simulated process, Fig. 4., Fig. 5..

RK2

Frequency=3
Phase=0

Frequency=2
Phase=0.47

&

Fig. 4. Elemental demonstration of perpendicular oscillations composition. Simulation results
can be varied by changing the operating parameters of the signal components.
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Fig. 5. Simulation of a logic circuit, gated RS toggle circuit in real time (StopTime = -1). Data

on the input can be changed using the True/False button, status signals are displayed in the
real time on a graph and the status of data output is shown by a 'LED" indicator.

2. SIMPLE EXPERIMENTS WITH TECHBOARD INPUT MODULE

For teaching the fundamentals of programming using the Scratch [5] application, was
developed TechBoard input module. The module is backwards compatible with the original
PicoBoard [6] module, but with wider options of peripherals connectivity and robust
mechanical construction. The module communicates via USB and communication in Python
is possible using the standard library Serial.

The standard module PicoBoard contains light sensor, sound sensor, button, slide
potentiometer input and four (AD) inputs for measuring voltage resistive divider. TechBoard
as a modified version, allows you connecting external devices - joystick, buttons, light
barriers, resistance temperature sensor, etc. Inputs A and C are numerically linearized, so that
when connected potentiometer, the output value is linearly proportional to the resistance. The
values of the inputs B and D are proportional to the voltage on resistive divider and the top
resistor of the divider (2k) is a part of the module. In the PSE environment is the module
represented by the block, which generates a vector of the sensor and input values. Application
example of module usage is shown in Fig. 6.
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Fig. 6. TechBoard module and its usage in the PSE environment

The module allows interactive control of simulation, like the components of the PSE
environment. More interesting in educational practice is the use the module for simple
physical experiments in elementary and secondary schools, especially in the field of time data
collection from sensors — i.e. demonstration of exponential course of the cooling liquid, light
conditions during the day and the passing clouds. Period of data collection module can be
controlled by a timer, the minimum period is 0.1 sec.

3. ARDUINO AS AN PSE INTERFACE TO THE REAL WORLD

Arduino [7] is a popular and affordable platform for teaching the microcontrollers
technology, control and robotics. The Arduino programming environment is available with a
library for connecting typical peripherals - motors, servos, interface 12C, SPI, and many
others. From the pedagogical point of view Arduino suffers from (and also all similar
platform based on a microcontroller) a problem of tracking and debugging the program.
Control algorithm is stored in the memory of the microcontroller and without special aids it is
possible to learn about the state of a program only through a change in the state of selected
module terminals or over UART to the console.

Using a simple programs downloaded to the Arduino allows its usage as a relatively quick
input-output device connected via USB, while at the maximum communication speed is real
time of information exchange between the PSE and the Arduino platform less than 2 msec,
which is sufficient for regular school experiments. Since the Arduino platform is rather
flexible, its inputs and outputs can be optimized for the given experiment. From the
pedagogical point of view is important, however, that the actual control of the experiment
runs under the PSE environment in real time. It is therefore possible to interactively optimize
and present the state variables of a controlled process. A simple use example is the optical
target tracking - infrared diodes using two reception diodes, rotated by servos, Fig. 7., Fig. 8.,
and video [8].
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Fig. 7. The experiment set with objective of target tracking (optical tracking system),
servo is controlled by Arduino PWM output, two receiving photodiodes are connected to the
inputs of A/D converters of Arduino A0 and Al.

pse & Arduino Pro Mini

Optical tracking control
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Fig. 8. Control of the experiment from Fig. 7. Communication with Arduino is
represented by a component that mediates communication and a conversion of input-output
values.

4. THE USE OF THE PSE BLOCK GRAPHICS USER INTERFACE FOR
A DEMONSTRATION OF SOLVING DIFFERENCE EQUATIONS

We will present features of open source PSE graphical environment, based on the Python
programming language and its possibilities for the demonstration of solutions of differential
linear and nonlinear equations with examples of bifurcation diagrams. The essential
characteristics of Z-transform and its use in the implementation of digital filters will be shown
through simple examples.
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Differential count has an important application in Mathematics itself (in numerical
mathematics, especially in the numerical solution of differential equations, probability theory,
number theory), but also in such applications as in civil and electrical engineering.

Forn=0, 1, ..., nand function x(n) is defined difference operator A as follows:
AX(n)=x(n+1)—x(n)
Higher ordinary differences for natural number m are defined as follows:
A"™x(n) = A[A”x(n)]
Difference equation of one independent variable N€ N and one unknown function
u(n) is a functional equation that has the form:
f (n,u(n),u(n+1),....,u(n+k))=0
Let us show some simple examples of difference equations and systems of difference
equations.

Examples:
1. Logistic map

x(n+1)=rx(n)(1-x(n))

r is a given constant, X, is the initial value and each sequence is determined by the given
equation.

2. Digital filter

Digital filter with finite impulse response (FIR) can be described by difference equation of the form
n-1
yn = z h k Xn—k
k=0

The digital filter with infinite impulse response (1IR) is characterized by recursive difference
equation in the form

M-1 n-1

Z a‘rnyn—m = Zbk Xn—k
k=0

3

3. Predator-prey model is described by a system of difference equations
x(n+1)—-x(n)=—-ax(n)+bx(n)y(n),a,b>0
y(n+1)—y(n)=py(n)—ax(n)y(n),p.q>0

and set values x(0), y(0).

4. Model rivarly
x(n+1)—x(n)=ax(n)—bx(n)y(n),a,b>0

y(n+1)—y(n) = py(n) —ax(n)y(n), p.a>0

Difference equations can be solved in addition to analytical methods using Z -
transform. In the following examples are presented solutions of difference equations using
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simulation models. Examples are useful in education especially for students of study fields in
informatics, automation, robotics, electrical and so on.

PSE simulation environment was created as an open source software, developed
exclusively in Python [1] using its extensive libraries. The emphasis in the development of
PSE was first put on its openness, possibilities of expansion and modifications, which is
different from the commercial option.

PSE was primarily developed for the creation of simulation models, its usage is also as
an interactive tool for demonstration of selected topics in the teaching process at secondary
schools and universities.

5. DIFFERENCE EQUATIONS SIMULATIONS

A typical difference equation consists of a combination of input and output values
mutually displaced in the multiples of discrete time intervals. The basic component of the
simulation of difference equations is therefore a component time unit shift of the input value
in the standard Z-transform marked as z*.

RK2 @ Period=0.1

- = H_J
Step=0.005
. 4
[ z_l b [ z_l b
Ve )

Fig. 9. Component unit delay. The delay time is defined by Solvera iteration step and the
delay time is defined by an external timing.
Examples
Fig. 10. shows a block structure with a simple difference equation representing the

band digital filter of the second-order. The use of the block to filter a periodic signal is shown
in Fig. 11. The time delay is defined by the simulation parameter.

filter 125.pse
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Fig. 10. IR block structure with difference equation.

74



Y 4
’\' pSe test filter 125.pse
Block demo - Simple digital IIR filter

i- +
filter_125.pse

Frequency=2 |

Transient response

Amplitude=1 [ S —
@RESEARCH CENTRE iz | StopTime=1
= UNIVERSITY DF ZILINA | | Step=0.002

Fig. 11. Usage ob block from Fig. 10.

Block structure of a more complicated difference equation is in Fig. 12.
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Fig. 12. The structure of differential equation of IIR digital filter divided into an input and
output section.

: g} .

Difference equations describing the evolution of the population in the time, referred to as
logistical view, can produce non-stationary solutions and chaos. Non stationary parametric
solution simulation of difference equations is shown in Fig. 13.
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Fig. 13. Bifurcations in one-dimensional discrete dynamical system.

CONCLUSION

The limited scope of this paper does not describe all the possibilities of the PSE platform in
the pedagogical process in details. In short, we can mention the creation of interactive
textbooks in the environment Ipython Notebook [9], management of laboratory equipment via
TCP/IP or specialized buses and acquisition respectively processing data from the
experiments. Attractive is also a communication of separate PSE environments in the Internet
environment via UDP packets and the ability to create interactive experiments distributed to
students, such as observation of the weather in a wider geographical area, sharing of joint
experiments and the like. At the stage of experimental verification are specialized input-
output modules for applications in robotics, mechatronics and physics experiments.

Platform PSE is freely available at [10], documentation, examples, and tutorials are
available at [11].
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Abstract: Introduction of modern information and communication means is significant means
of modernizing and raising attractiveness in educational process. The main goal of these
modernizing tendencies is continual increase of educational level corresponding to the
current level of knowledge in individual subjects with a respect to the age of a student and
type of a school, which one studies at. Information and communication means also became
the part of university education, where their utilization mainly serves to development of inter-
subject relations. The paper deals with the possibility of using application software such as
Matlab, MS Excel and Mathematica in educational process of natural science and technical
subjects. Suitability of utilization of computer means is presented at solving the problem from
electrical engineering — solving differential equations of second order and describing time
dependencies.

Keywords: information and communication technologies, software means, MATLAB,
Mathematica, MS Excel

INTRODUCTION

The most distinctive feature of the present time is implementation of information and
communication technologies into everyday lives of people. These changes influence not only
private (spending free time, communication) and work spheres, but also educational process.
One of the most important tasks in educational area is to work out such programs and
methods, at which computers would become common work tools of a teacher and at the same
time they would not eliminate development of creative thinking of a student. Nowadays the
issue of using computers in educational process is very often discussed at various levels. As a
result of those discussions, it can be said that computers form reliable and attractive
environment for learning, provide positive feedback, help to create shapely correct text,
respect individual requirements , pace, speed and skills, allow to return to the problem and
start or finish work in various places, help students with specific disorders of learning and
handicapped students to learn, make rich information sources available, comprehensibly
present complex advancement of thoughts and relations by means of graphics, offer
environment for development of students thinking [1], [2].

Information and communication technologies support non-traditional forms of education (e.g.
e-learning) and can contribute to development of lifelong education that is inevitable for
continuous renewing and gaining necessary knowledge and skills for life in digital world.
Using information and communication technologies means possibility to improve learning
and thinking in many ways [3], [4].
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Information technologies present one of the factors, due to which mathematical education is
continuously changed, transformed and modernized. Teaching natural science and technical
subjects using mathematical apparatus at technical schools is not easy and the task of
pedagogues is to make educational process interesting, extraordinary and attractive.

In the following part of the paper the possibility to make teaching the subject of electric
engineering by means of computer support of MS Excel, Matlab and Mathematica programs
more effective is presented by particular example of solving transient performance in RLC
circuit.

1. PHYSICAL ANALYSIS OF THE PROBLEM

Problem: Calculate and depict the course of voltage and current in the capacitor in RLC
circuit with parametersR=5Q, L=01H, C=1004F connected to voltage u=10V, if
voltage in the capacitor at the switch was OV and current flowing through the circuit at the
moment of switching the circuit was zero [5].

Solution: It is a series electric circuit with R, L, C connected to harmonic voltage with initial

conditions (¢ =0s)=0, u.(z=0s)=0 (Fig. 1).

(B———— 00—
$ C

o\c I
Sw Bat
Fig. 1. RLC series circuit

Electric current, which flows through the circuit at given moment, can be determined by
means of 2" Kirchhoff’s Law. For electric voltages in the circuit we get
uU_+Uc +Uug =u (1)

where u ,uc,ug present momentary values of voltage on the reel with L induction, capacitor

with C capacity and resistance with R value.
For momentary values of voltage we have

di 1t
U =L—, U~ ==1idt, up =Ri 2
L=l U c{ R @

and for the current flowing through capacitor we have

j— U
dt

©)

If we substitute (2), (3) equations into (1) equation we get
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d' L _[ldt+ Ri =
dt
(4)
L ( dUC) J‘C dUC dUC —u
dt dt dt

We got linear integral-differential equation. For further solving it is suitable to transpose (4)
equation into differential equation
du

du,
+RC—~+u,=u 5
dr* d € ®)

LC

It is a linear differential equation of second order with constant coefficients with right side.
Such a differential equation can be solved either analytically or numerically. Analytic solution
of this equation requires considerable mathematical knowledge and skills. On the other side
numeric solution requires computer skills (or skills with application software).

2. ANALYTICAL SOLUTION OF THE PROBLEM

General solution of the equation can be found as total of general solution of the appropriate
linear differential equation with constant coefficients without right side (Y) and particular
solution of linear differential equation with constant coefficients with right side (Yp) [6]
y :Y +Yp .

After substitution of numeric values into (5) equation we have differential equation
d? uC
dt?

107°

+5-10" 4ddt +Uc =10

The solution is presented in uc =U +Up. Firstly, the solution of differential equation is

found. The right side of differential equation of second order with constant coefficient equals
to zero and equation is solved by means of characteristic equation

10°42+5.101+1=0

2
/1—5+5—ﬂ;+1=0
The equation is adjusted into 10% 10 : =  224501+10°
Ars0iaio®
10°
2 5
50+ _4.1. _ B0+ /—397500
The solution of quadratic equation /4, , = 50—\/(52)1 41107 -50+ 2397500

Since discriminant of the equation is negative, the solution is presented by two complex
associated roots

2y =25 + 25i+/159
Ay =—25 — 25i+/159
The solution of differential equation on R is a complex function

Y =™ =e@+HD)X _ o@albX _ o (s +sin bx), where two functions
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y; =e® cosbx, y, =e*sinbx, which are linearly independent to R and create fundamental
system of equation solutions, are given. General solutionis Y =C;y; +CoY5 .
General solution of the equation is as follows

U = Cie > c05(25+/159t) + C.e 2> sin( 25v/159t).

Particular  solution (Yp) of linear differential equation with special right

side f (x) =[R(x)cos x+ S(x)sin pxJe® can be determined by the method of estimation of
particular solution, where R(x) is a particular multinomial of r grade, S(x) is a particular
multinomial of s grade, «, S are concrete numbers.

Itisvalid that f(x)=10 = a=0,8=0,r=0,s is not determined. For our equation we
have up = A and thus Up =10.

The entire solution of the equation can be expressed as follows

Ug (t) = Cie > cos(25+/159t) + Coe 2™ sin( 25+/159t) +10

C1 and C; constants can be determined from initial conditions i(z = 0s)=0, u.(t=0s)=0, so
we have

U (t = 0) = CLe %0 cos(25+/159 - 0) + C,e 2> sin( 25+/159 - 0) +10

u. =C;+10

u.=0 = C;=-10

Cz is determined from the following condition i =C dstC =0 => —==0.

It is valid for C, that

d“C Cal(-25) - &% cos(25/159t )+ & 2% sin( 25/1591) )- 25150
+C,|(-25)e72" sin (25159t )+ (cos(25+/1591) ) 254159 |+ 0

dstC (t=0) = Cy|(~25) 6250 cos(25159 -0)+ e 250 sin( 25+/159 -0) ) 25159 |
+C,|(-25)e 259 sin (25150 - 0) + (cos(25+/159 -0) ) 251159 |+ 0

dstC(t ~0)=Cy[(-25)~ 0]+ C,[0+ 254159 |+ 0

dstc (t=0)=-25.-C, + 25159 C,

Qe _0y20 = —25.(-10)+25159C,=0 = C,=——2_
dt ? N

Analytic solution of the differential equation (expression of dependence of voltage on time) is
as follows

Ug (t) = —10 - e 72> cos(25~/159t) — 10

N

It is valid for dependence of current on time that

e~ sin( 254/159t) +10 (6)
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i—cdUc 194 i(— 10 -e 2™ cos(25+/159

10 o5t .
t)——e sin(25+/159t) +10
dt dt ) /159 ( ) ]

After substitution we get

\/145 e 2sin (ZS@t) (7)

For dependencies of voltage and current on time the graphs of dependencies given by (6) and
(7) equations are described in MS Excel program (Fig. 2 and Fig. 3).
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Fig. 2. Dependence of voltage on time Fig. 3. Dependence of current on time

Analytic solution of the system of differential equations is difficult, it requires considerable
mathematical knowledge and skills from the theory of solving differential equations and
obviously does not lead to simple dependencies and results. Therefore the problem will be
solved numerically by using MATLAB [7], [8].

3. NUMERICAL SOLUTION OF THE PROBLEM IN MATLAB

Efficiency of educational process can be increased by application of some modern teaching
methods. One of them is implementation of information and communication technologies into
teaching such as utilization of means of MATLAB at solving differential equations.

MATLAB presents highly efficient language for technical calculations. It combines
calculations, visualization and programming into simply usable environment. It is an
interactive tool in which the basic data type is the field without necessity to declare its
parameters. This property together with number of in-built functions enables relatively easy
solution of many technical problems. In school environment MATLAB is a standard tool in
teaching mathematics and other technical subjects, but it is also an efficient tool for research,
development and data analysis [9], [10].

MATLAB is closer to the programming language compared to other similar products. From
didactic point of view it is a suitable system, because it does not require complicated
programming formulae and after relatively short time a beginner can manage to work in
MATLAB. On the other side it presents a strong tool for experienced users. MATLAB does
not have so many prearranged mathematical functions as for example MATHEMATICA. It
does not have integrated properties such as MathCad. Support of symbolic calculations is not
its standard part as it is at above mentioned products. However, it does not mean that
MATLAB is depleted of these possibilities. It contains more than 500 simple or more
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complex mathematical functions implemented in the form of highly efficient and robust
algorithms. From these functions it is possible to compose arbitrarily other functions. Sets of
functions suitable for solution of a certain type of problems in MATLAB are called toolboxes.
SIMULINK is an independent extension of MATLAB - solution of the system of nonlinear
differential equations with a graphic entry of the system being solved. It enables graphically
to observe dependencies of parameters at any connection point. It is used for simulation of
dynamic behavior of the observed system. It is possible to use MATLAB in case of robust
calculations, processing of extensive data files, work with large matrices and in cases when
solution of the problem can be converted into vector and matrix operations. With regard to
programming possibilities it is advantageous to use MATLAB also in case of branched or
iterative algorithms of solution.

It is necessary to realize at the solution of differential equations of higher order in MATLAB
that every differential equation of higher order can be transposed to the equivalent set of
differential equations of first order with known initial conditions. At the problem solution it is
suitable to transpose the differential equation of second order (5) to the set of differential
equations of first order (8) as follows

Qe _1
dt C

8
di _u-uc—Ri ®)
dt L

Basic standard function for the solution of differential equations is ode45 function, which
syntax is:
[t,y] = 0ded5 (‘name of the_function’, time_interval, initial_conditions)

where name of the_function is reference to the function describing the set of differential
equations, the parameter of time_interval is presented by the vector with two elements —
initial time of solution t, and final time of solution t, the parameter of initial_conditions is
presented by the vector of initial conditions y, from which we find y(t,)=y,. Two
parameters are the output of the ode45 function: t - the vector that contains instants of time,
in which solution values are determined and y - the matrix containing its own solutions. To

depict the current and voltage dependence on time, program writing in MATLAB is used,
where the initial problem parameters, time and properties of depicted voltage and current
dependences are given.

The following initial parameters are used at the problem solution: R =5Q, L=10"1H,
C=10"*F, u=10V.
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function [] = BLC_obvod
0= 10; 5V

= 5; % ohm

= le-4; £ F

= le-1l; ¥ H

UcO = 0; ¥V

I0 =0; 3 2

t_konec = 1.5e-1;

% duc/dt = i/C
% di/dt = (U0 - uc - Ri)/L
function dxdt = dif rce(t, x)

dxdt = zeros(2,1);
dxdt (1) = x(2)/C;
dxdt (2) (U0 - =(1)

end

[t, ] = ode45(Rdif_rce,
uc = x(:,1);

i=x(:,2);

ur = R¥*i;

ul = U0 - uc - ur;
subplot (1, 2, 1});
plot(t, uc, 'r'):

grid on;

- R¥x(2))/L;

[0, t_konecl, [UcO, I01);

title('The time dependence of wvoltage in the circuit '");
xlabel ('t [s]'}); ylabel('uc [V]");

subplot (1, 2, 2);
plot(t, i, 'b'}:

grid on;

title('The time dependence of current in the circuit ');
xlabel ('t [s]'): vlabel('il [&]');:

end

The result of the program initialization is depiction of time dependence of the voltage and

current of the RLC series circuit (Fig. 4)

The time dependence of voltage in the circuit  The time dependence of current in the circuit
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Fig. 4. Voltage and current flow in the RLC circuit

4. THE PROBLEM SOLUTION IN MATHEMATICA PROGRAM

Mathematica is a computational software program used in scientific, engineering, and
mathematical fields and other areas of technical computing, which we use to solve the
problem. The parameters of the problem are substituted into the equation (4) and equation is

written into the Mathematica program as (10*-5)(d(du/dt)/dt) +(5*10"-4)(du/dt) +u =10.

After the program initialization we have the solution for voltage:
Uc(t) =Ce ™ cos(25\/159t)+ Ce > sin (25\/159t)+ 10
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where the solution of the equation is the sum of general solution of the appropriate equation
without the right side «, and optional particular solution u,, t. . u-(¢)=u,+u,. The C,,C,
constants are determined on the basis of the initial conditions. The result of the solution of our
differential equation is (6)

(1) = ~10¢ " cos(2500 V1597~ —o— e sin (2500 /1597 ) + 10

V159

The result of the problem solution after substitution of initial parameters in Mathematica
program can be found in Fig. 5.

Solve —4X_ 4 _dx° 4 y(x) = 10, such that u(0) =0 ete e the partic solution to —42 B TR by th
2005 T0000g” T UX) 1 that u(0) Determine the particular solution t A tu(x) + B = 10 by the
The general solution will be the sum of the complementary solution and  method of undetermined coefficients
particular solution e
i —d—u;i] du(x)
~L[2“ du(z) The particular solution to —4=— 4 u(x) + -2~ = 10 is of the form
Find the complementary solution by solving —dx” X 4 y(x) =0 100000 2000
100000 2000 U, (x) = a;
Assume a solution w he proportional to e** for some constz 7 .
Assume a solution will be proportional to e** for some constant A Solve forthe unknowa constantia;
Substitute u(x) = e* into the differential equation dup(x)
22 B Compute ;
2 fsax Ax x
d‘.z(" ) 2 €) Vi dup(x)
- - +e'"=0 e — dqy)
100000 2000 dx dx
2 " " . " =0
Substitute 45 (e'¥) = 2% €'~ and £ (e'¥) = A€ .
ax? dx <+ a2upix)
- ) Compute -
A2e'x el . ax*?
+e'* =0 aZup(x) 2
100000 2000 —h d_(al)
. o ax? ax?
Factor out e*~ =0
22 b Six
100000 k2 2000 1| e R0 Substitute the particular solution up(x) into the differential equation
2
Since €* # 0 for any finite A, the zeros must come from the polynomial é “l;"" dup(x)
A2 2 dr __ 7“-" +uy(x) =10
TOSHLL LT, B 100000 2000
100000 2000 —9 4.9 44,=10
100000 2000
Factor '
substitute @y into u,(x) =a
A2 +50 1 + 100000 Substitte g p(X) =@
= u,(x) =10
100000 p (%)
Solve for A The general solution is
A=-25+(25i)V159 or A =-25-(25#)V 159 c1cos(25V159 x) ¢z sin(25V 159 x|
ey u(x) = uc(X) + up(x) = CTES + TS +10
_254254V ¢ 253 25
The roots A =25 & 25 iVI50 give uj(x) =c; el 25+25¢V159)= € e
Solve for the unknown constants using the initial conditions

(-25-254V159 | x "

Uy(x)=cy e s solutions, where ¢; and ¢, are arbitrary

Substitute u(0) = 0 into u(x) =
c; €5 5in(25V 159 x) + ¢y €7 cos(25V 159 x)+ 10
¢ +10=0

constants
T

'he general solution is the sum of the above solutions
—254+(254) V 159 | x -25-(254)V 159 | x
u(x)=u,(x)+ug(x)=clc[ +@5d 9"+n:2 c( L 9"
Solve the equation

Apply Euler's identity €®*# = €2 cos(B) + i €° sin(B): ¢ =-10
cos(25V 159 x) isin(25V 159 x)
u(x) =c,; . + — +
25 x o25x

Substitute ¢; = —10 into u(x) =
¢z € 25%5in(25V 159 x) +c¢; €725% cos(25 V 159 x) + 10:

[ cos(25 V159 x) isin(25 V159 x)]

e25x e25x

Regroup terms:

(c1 +c2) cos(25 V159 x) i(c1—c2)sin(25 V159 x) Answer:
U = 25~ * 25~ = 10 cos(25 V159 x) i ¢ sin(25 V159 x) S
Redefine ¢y + ¢ asc; andi(c; —c¢a) as ¢y, since these are arbitrary [k &=
constants
¢y cos(25V159 x) ¢y sin(25V159 x)
ue) = £25x * 5%

Fig. 5. Solution of differential equation in Mathematica program

The graph of voltage dependence can be found in Fig. 6.

85



t
0.00 0.05 0.10 0.15

Fig. 6. Voltage characteristics of RLC circuit

For the current we have:
duc 4006 25 sin (2500 V1591
dt 7159

The equation (8) is written into the Mathematica program as follows
400* (e"-(2500* t)) *sin (2500* sqrt(159) *t)/sqrt(159) =i . The graph of current dependence
can be found in Fig. 7.

i(t)=C (8)

Fig. 7. Current dependence of RLC circuit

CONCLUSION

The presence of information and communication technologies in teaching has positive
influence on efficiency of educational process and students accept them very positively.
Based on the results it can be said that it is possible to facilitate and improve educational
process by suitable combination of classic teaching methods and introduction of new elements
using information and communication means. Gradual introduction and utilization of
computer technique into teaching natural science and technical subjects at universities is one
of the significant elements of modernizing technical and natural science education. The main
goal of these modernizing tendencies is continual increase of educational level corresponding
to present-day degree of knowledge in individual teaching disciplines with the respect to the
age of a student and type of school studied. On the other side teaching these subjects with the
support of computer technique cannot be understood in any case as a universal way how to
solve the problems in educational system.
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Abstract: In this work we review the construction of solutions of linear equations of second
order stationary with delay. We have special functions called lagging exponentials, and there
combinations by which obtained a solution of the Cauchy problem. We studied real
eigenvalues of different signs, eigenvalues of complex conjugate eigenvalues, eigenvalues of
really different.

Keywords: differential equation, delay, solutions

INTRODUCTION

Let's consider the linear differential equation of second order with constant coefficients. In the
absence of delay, it has the form
X"(t)+ px'(t)+gx(t)= f(t)

and finding solutions of the Cauchy problem x(0)=x,, x'(0)= x;, the equation reduces to the
investigation of the roots of the characteristic equation
X +pAl+q=0.
In this report we reviews the differential equations with delay
X"(t)+ pX'(t—7)+gx(t - 27) = f(t).
The characteristic equation corresponding to the equation has the form 4+ pie™ +ge** =0.

This transcendental equation, and it has a countable number of roots.
We have special functions called lagging exponentials, and there combinations by which
obtained a solution of the Cauchy problem x(t)=g(t), X(t)=¢'(t), —27 <t<0..

1. THE EIGENVALUES ARE REAL, DIFFERENT SIGNS.
We consider the equation without delay

X"(t)—-Q*x(t)= f(t), t=0. (1.2)
The solution of the homogeneous equation which satisfying the initial conditions
x(0)=x,, X'(0)=x.. (1.2)
It has the form
X, (t)=;x0(eQt +e"‘)+219(eQt —e™™). (1.3)

A particular solution of the inhomogeneous equation which satisfying zero initial conditions,
we search in the form of Cauchy

Xen (t) =

K(t,s)f(s)ds, (1.4)

O t—
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Cauchy kernel has the form K (t,s)= ztz(efl(”) —e ),

And the solution of the Cauchy problem of the inhomogeneous equation (1.1) with non-zero
initial conditions (1.2) has the form

x(t)= ; X, (e +e7 )+ 212 X (e™ —e ™)+ 2; j (€9 —e)f(s)ds.  (1.5)
0

If we denote x (t)= ;(eQt +e ™), x,(t)= 2;(eQt —e?),
the dependence takes the form
X(t) = %%, (t)+ X0, (t) + [ x,(t —5)f ()ds - (1.6)
0

The equation of the second order with delay. We consider the equation with one constant
delay

X'(t)-’x(t—27)= f(t), t>0 1.7)
We get it solution that satisfies the initial conditions
X(t)=(t), X(t)=¢'(t), —2r <t<0. (1.8)

It is shown that there is a representation of the solution in a form similar to the dependence
(1.6).

Definition 1.1. A lagging exponential expT{Q,t} with indicator QQ and delay 7 is a function
that has the form

0] , —wo<t<-—r,
1 , —7<t<O,
t (1.9)
1+ — , O<t<r~t
1
_ 2
exp_{Q,t}= 1+l =D T<t<2r
u 21
S ) e
1+£2%+~n+QkE—£%g£Elf (k -z <t<kr

We introduce two functions which are linear combinations of exponentials delayed.

1 1
As the presentation of the delayed exponential expT{Q,t}, we have the following dependence

0 , —o<t<-—r,
1 , -7< ,
1+0? 0—27'7)2 , r;: :1: (1.10)
x (t)= 1.0 _2!7)2 + é“ ( _43;1)4 , 3r<t<5¢
1+Qz(t_2!’)2+--~;.92k[t_(2(;k_)!1)r]2k 2k -7 g.;< (2k +1)r
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0 , —o<t<O,

t
I , 0<t<2r, (1.11)
3
i+92% , 27 <t <4z,
3 ) 5
X, (t): %4_(22 (t _32|T) + O (t _54;‘[) s 47 <t <67
3 o 2k+1 ' o
i+QZ%+-~+Q”% . (KT <t<(2k +2)
! +1)

We received the following statement.

Theorem 1.1. The solution of the Cauchy problem (1.2) for the homogeneous equation with
delay can be written as

0
X(t) = (o(— 21')X1(t + r)+ (p’(— 22')X2 (t + 22')+ sz(t - S)go"(s)ds :

27

Where x,(t) represented in (1.4) and x,(t) presented in (1.5).

(1.12)

Theorem 1.2. The solution of the Cauchy problem with zero initial conditions x(t):O,
x(t)=0, — 2z <t <0 for the inhomogeneous equation has the form

X(t) :sz(t—s)f(s)ds, t>7, (1.13)

2. THE EIGENVALUES OF THE COMPLEX CONJUGATE.
Let the eigenvalues of the characteristic equation are equal

1 > 1 5
A =2(_ P+ Py _4p2)’ A, =2(_ P, =~/ P, _4p2)’
p/ <4p, and eigenvalues of the complex conjugate, i.e. 4 ,=p=*iq, p= - D,

q =; /4 p,— p? - Then the general solution of the homogeneous equation is given without

delay
Xoq () = X (£)%, + X, (£); x,(t)= e’”(cosqt —gsin qtj , X, (t)= ;e"‘sin qt-  (2.1)

t
a particular solution satisfying zero initial conditions x,, (t)= [ x,(t—s)f(s)ds -
0

Definitively, the solution of the Cauchy problem of the inhomogeneous equation (1.1) with
non-zero initial conditions (1.2) has the form

t
X(t) = x,(t)x, +x,(t)x + [ %,(t—s)f (s)ds. (2.2)
0
The equation of the second order with delay. Consider the homogeneous differential
equation with delay
X"(t)+ pX(t—7)+ px(t—27)=0, t>0. (2.3)

Definition 2.1. A lagging exponential expr{/ll,t} with indicator of the complex A, = p +iq
and delay 7 will be the function that has the form
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0 s —o<t<-—r,
1 ) —7<t<0, (24)
1+(p+iq)i , O<t<r,
exp {1,,t}= 1+(p+iq)i+(p+iq)2(t_27;[)2 r<t<2r
1+(p+iq)i+~~-+(p+iq)k[t_(kkiTl)T]k , (k=Dr<t<kr
Let's consider auxiliary statement.
Lemma 2.1. occurs of ratio
(p+iq) =r*coskp+irsinke, r=,/p’+q°, p=arctg 3. (2.5)
p

Lemma 2.2. Delayed exponential expr{zl,t} (with the index 4, = p+iq and delayz) can be
written in the form of a complex function exp_{4,t}=u_{p,q,t}+iv {p,q,t},
Where

0 , —wo<t<-—r,
1 , —7<t<0,
1+ r‘COS(p% , O<t<r, (2'6)
_ 2
u, {p,q,t}= 1+ rc03¢%+ r’cos2¢ (t 2|T) r<t<2r
)
1+rcos(p%+~-~+rkcosk(p% (k—-Dr<t<kr
(0] , —o<t<-—r,
0 , —7<t<0, (2.7)
rsin(p% , O<t<r,
2
v {p,q,t}= rsin ¢L+ r’sin Z(p@ r<t<2r
un 2!
i
rsin¢)%+~--+rksink¢% (K—Dr<t<kr

Lemma 2.3. Delayed exponential expf{/iz,t}, (with the index A, = p—iq and delay z) can
be written in the form of a complex function exp_{4,,t}=u_{p,q,t}—iv.{p,q,t}.

Theorem 2.1. Delayed exponential exp_{4,,t} with the index

. 1 1
%:p‘qu p=—5pl,q=§1/4p2—p12 (29)
it is the solution of differential equationa with delay (2.1) satisfies the initial condition
x(t)=1, —r <t<0. (2.10)

Similarly, we can prove.
Theorem 2.2. Delayed exponential expr{ﬂz,t} with an exponent

: 1 1 ;
A = P=10, p=—-2p. q=4p,— P, (2.11)

2 2
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It is the solution of differential equation with delay(2.1) which satisfying the initial conditions
(2.10).

We introduce two functions wich is a linear combination of delayed exponentials exp,{/ll,t},
1
) [exp {4,,t}—exp (4,1)]- (2-12)

exp, {4,.t}.
1
Xl(t)_ iz ) [2'2 expr{/ll’t}_/ll expr{)“z’t}]’xz(t)_ /12 _

1

Here the parameters A, A, are defined in (2.9), (2.11).
As follows from the representation (2.3) of the delayed exponential expr{ﬂ,t}, the following

dependence takes place

0 , —wo<t<-—r,

1 , -7<t<0, (2.11)

1 , O<t<r,
G

A-alt-of Ak
1+21/1& ~5 2 +- +2122/12_21 ) , (k=Dzr<t<kz,

forasmuch as 44, =r?, 2 — & =2ir‘sinke, k=1,23,..., then

— A sin(k -1
AA, /’li _rk ( )(D.
A, =4 sin @
Here we obtain
0 —o<t<—r,
1 —-7<t<0,
1 O<t<r,
,(t—z)
Xl(t)z 1-r 72' , ‘[St<22’,
14r2 (t—7) el ksm(k l)go [t—(k-Dz] . (k—Dr<t<kr,
! sin (k)
Similarly for the function x,(t)
0 —o<t<-—7,
0 —7<t<0, (2.12)
t o<t<v,
1
£+rsi{‘12(px(t—r)2
) L sin @ 2! , r<t<2r
X, = . 2 - 3
£+r3|f12(px(tfr) +SII-’13(pX(t72‘L') 27 <t <37
i sin ¢ 21 sin @ 3!
7+Si{‘12(0><(t—z')2+___+si|_’lk(px[t—(k—1)z']k  (k-Dr<t<kr
1 sing 21 sin @ k!

Corollary 2.1. A linear combination xl(t) with delayed exponentials is the solution of the
differential equation with delay (2.1).
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Corollary 2.2. A linear combination xz(t) of delayed exponentials is a solution of the

differential equation with delay (2.3) wich satisfying the initial condition
x(t)=t, 0<t<r. (2.13)

Based on the above allegations we get Representation of solution of the Cauchy problem for
equations with complex conjugate eigenvalues.

3. THE REAL EIGENVALUES, DIFFERENT.
Let the eigenvalues of the characteristic equation

112%(_ P+ p12_4p2)’ /12=%(_ P, — p12_4p2)

Indeed, various i.e. 4, # A,. Then the general solution of the homogeneous equation without
delay looks like

t) = x(t X,y ()= 280 AT e”?' e* (31
Xod( ) X1( )Xo + Xz( )Xo Xl(t) PRy X (t) ) ( )

. /11 —x(t—s)

and the solution of the Cauchy problem of the inhomogeneous equation (1.1) with non-zero
initial conditions (1.2) can be written in the same integral form.

Cauchy kernel has the form (¢, s) =

Let's consider homogeneous differential equation with delay
X"(t)+ pX(t—7)+ px(t—27)=0, p,=—(4 +4,), p,=4L, A4 =4, t>0. (3.2)

with the initial conditions
x(t)=o(t), X({t)=¢'(t), —2r <t<0. (3.3)
We introduce two functions it is a linear combination of delayed exponentials exp {4,,t},
eXpr{//l’Z’t}

x1<t)=lf&[zzexp,{a,t}—mxpfuz,t)], X (0= oo ht -0 (2.0) €9

As follows from the representation (2.3) of the delayed exponential exp {4,t}, have the
following depending

0 , —o<t<-—r,
1 , —7<t<O,
1 , O<t<r, (35)
% (t) = 1— 211( T) — A2, (4 + z)(t 27) r<t<2r,
B t—z) /ul AA [t —(k -] ' B
1 212272! + PRy ) . (k—=Dz<t<kr,
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0 s —o<t<-—r,
0 s —7<t<O,
L O<t<r, (36)

1
t ()
x,(t)= l'+(ﬂl+l) T<t<2r
2 L+(/'Ll+i)(t '[) +(/'ll+/'li/'i +ﬂ.2)(t 27) ) 2t <t <37
i+(ﬂi+ﬂz)(t 2!) +Zﬂ§1’ft% , (k-Dr<t<kr

Corollary 3.1. A linear combination x(t) of retarded exponentials is a solution of the
homogeneous differential equation with delay satisfying the initial conditions (3.4).

Corollary 3.2. A linear combination x,(t) of delayed exponentials is a solution of the
differential equation with delay satisfying the initial conditions x(t)=t, 0<t<r.

With using of the above functions we obtain a solution of the Cauchy problem for the
equation with delay.
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Abstract. A piece of metal can be deformed permanently if it is pulled sufficiently hard in
tension, compression or is twisted through a large enough angle in torsion. When the stress is
removed, the dimensions of the piece of metal do not return to their original values as they
would do if the deformation were elastic. The permanent distortion suffered by the metal
specimen is called plastic deformation. The chief mechanism by which plastic deformation
occurs is the motion of dislocations. Because there are an immense number of ways in which
dislocations can bring about plastic deformation it is not surprising that this phenomenon is
quite complex. The character of plastic deformation is a sensitive function of such variables
as temperature, the strain rate of deformation, the past history of the sample, crystal size, and
if the sample is a single crystal, the orientation of the axes with respect to the stress system.
Much interest has recently been taken also in the influence which small quantities of foreign
elements may have on the properties of metals. In fact, impurities play an important part in
metal physics research. They form a particular species of point defects, and are able to
interact with the other lattice defects which exist in the metal and determine a great number
of its properties.

It is the purpose of the present work to examine the temperature and solute atoms
concentration influence on mechanical properties of Cd-Zn single crystals alloys. The author
wish to express his thanks to Prof. Dr. Pavel Lukdc, DrSc., and Doc.Dr.Milos Hamersky, CSc
For the valuable discussions which have preceded the original of this work.

Keywords:, thermodynamics, dislocations, creep, stress exponent, dynamic strain aging.

1. INTRODUCTION

There exist many ways of producing the plastic deformation of solids. One of the simplest and
most applicable is the deformation by a tensile force, the so-called tensile test. In the present
paper we shall investigate the plastic behavior of Cd-Zn single crystals by means of then
tensile test, called creep. Creep is a tensile test where a specimen undergoes a continuous
deformation under a constant load or stress.

When a solid is subjected to a static force, the atomic lattice will adjust itself to oppose the
applied force and maintain equilibrium. On a macroscopic scale the atomic adjustment is
observed as a deformation which can be measured macroscopically. The deformation referred
to unit elements of the length of the sample and thus converted into the dimensionless
quantity is called “strain &£”. The response of strain to the applied stress o varies with the
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magnitude of this stress, temperature and strain rate. Experimental evidence conclusively
shows that the creep flow is thermally activated. It means that the local thermal agitation
provides additional energy, beyond that provided mechanically, to overcome barriers to creep
deformation. From the physical viewpoint it means that creep is a suitable method for
investigating these processes, because the plastic deformation can occur under a constant
stress owing to these processes only. The applied stress aids in overcoming these barriers and
serves to give direction to the resultant flow.

frb—rr e e e —— — — — — — — .

&
— .'...._._____—._.

lrime

Fig.1. Schematic representation of a creep- rupture curves

The creep of metals can be demonstrated directly by a creep curve which represents
graphically the function between creep strain and time. An idealized creep curve is shown
schematically in Fig.1. The strain & is obtained immediately upon loading and exhibits
characteristics of plastic deformation, but, of course, also includes elastic deformation.
Between & and & the creep rate decreases continually. This period of the creep curve is called
“primary creep”. Between & and & the creep rate remains nearly constant, indicating a nearly
steady-state condition. This part of the creep history in which the strain rate de/dt remains
nearly constant is called “secondary creep” or “steady state creep”. Beyond & the creep rate
increases until rupture occurs at the strain & and rupture time t.. The period of increasing
creep rate is called “tertiary creep”. In the present paper we shall mostly deal with the primary
(transient) creep of Cd-Zn alloys. The suitable method for studying the transient creep it is the
incremental loading method, which has been used by a number of authors [1-5, 10-12]. There
are two variants of this method:

a) The creep deformation occurs by incremental loading with increments so that the next

increment is added when the strain rate decreases to value fixed before (Fig.2a).
b) The sample is gradually loaded with increments in constant time intervals (Fig.2b).

We used the second one method and thus we obtained many curves of the transient creep on

one sample and we could follow the character of the transient creep curves on the applied
stress or strain.
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Fig.2. The incrementally loading method

The creep measurements have been performed using the equipment designed by the
Department of General Physics, Faculty of Science, Masaryk University in Brno. Its working

mechanism is schematically illustrated in Fig.3.
~ transducer

sample

load

i i i R A P i A i A

Fig.3. Schematic drawing of the creep apparatus

The loading lever is carried on a hardened steel seat and the leverage ration is 5 : 1. Shots
which are added into the vessel attached at the end of the lever are used for loading the lever.

97



The elongation of the sample is measured by means of a linear variable differential
transformer (G.L.Collins Corp., Long Beach, USA). It is situated at the end stretch rod. The
range of measurement from the viewpoint of necessary linearity is about £ 0,3 cm. The
sensitivity is stated to be about 2V/mm by the DC feeding 6 V from the stabilized power
supply Tesla BS 448 E.The linearity of the above mentioned range of measurements is 0,95%.
By means of a potentiometer connection a suitable sensitivity for each measurement has been
obtained. During the tests the output of the transformer is continuously recorded usany the
linear recorder EZ 4 or EZ 11. The whole equipment is situated on a concrete base to ovoid
possible vibration.

The temperature was measured by means of a platinum resistor or a Pt-PtRh thermocouple
which were placed near the sample or on its surface.

The flow stress of a crystal 7, can be decomposed into two components 7z and 7. The first one
reflects the microstructure (internal long range elastic interactions among obstacles and
dislocations). The second component () is the stress necessary to push dislocations over
local energy barriers (small obstacles, an intrinsic lattice resistance). Then we can write

Ta=T 4T (1)

Internal stress 7 is slowly decreasing with increasing temperature (similarly as elastic
constants). Short range interactions of dislocations with energy barriers (described by 7))
takes place in such a small volume that it is strongly influenced by thermal vibrations.
Thermal activation helps dislocation to overcome these barriers thus the flow stress is
decreasing with increasing temperature. These short — range thermally activated processes
govern almost all the temperature dependent mechanical properties of materials for example
dynamic strain aging. The dynamic strain aging occurs usually in the intermediate
temperature range (usually 0,3 — 0,4 T, where Tr is melting temperature). Among exterior
features of dynamic strain aging phenomenon include Portevin — Le Chatelier effect, yield
stress plateau and blue brittleness.

2. THERMALLY ACTIVATION THEORY

The concept of thermally activated plastic deformation was introduced as early as 1925 when
Becker [1] applied the Boltzmann principle to the nucleation of a slip region. After the
introduction of the absolute reaction rate theory of Eyring [2], Kauzmann [3] formulated a
general chemical rate theory of plasticity. Similar equations were derived by Seitz and Read
[4] based on thermally activated dislocation motion and by Nowick and Machlin [5] based on
thermally activated dislocation generation. Later many efforts have been concentrated on
definition of activation parameters, its measurement and interpretation [6, 7].

2.1. Activation parameters

The average velocity of a dislocation traveling in an crystal can be considered as a thermally
activated process, governed by the Arrhenius type equation

AF
V=V, exp(— ﬁj )
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where AF is the standard free energy of activation, k is the Boltzmann constant, T is the
absolute temperature and vo is the velocity when AF is zero. The term vo may contain the
mean distance the dislocation moves per activation event, a fundamental frequency such as
kT/h with h being the Planck constant, and a possible geometric factor. On the other hand, vo
can simply be regarded as the maximum attainable velocity such as shear wave velocity in the
crystal.

If a shear stress ¢ is applied in the slip plane so that 7 does positive work when the
dislocation moves forward, then the free energy of activation is decreased for forward motion
and increased for backward motion by 7' bA”", where b is the Burgers vector of the dislocation
and A" is the area swept by the dislocation during an activation event (activation area). This
indicates that external stress may fully activate the dislocation. The stress that can achieve this
is 7. which is defined as the friction stress. Let the activation area be A, at 7= 0; a

consideration of the reversible process shows

A
AR, = bjr*dA* (3)

0
Assuming that a relation exists between 7 and A" during the activation event. Hence at an
applied stress 7, the activation free energy for the forward motion is
A o
AF( =AF,—bz A —b [7"dA" = AF, —b [ A"d7” 4
A" 0
Similarly, the activation free energy for backward motion is

AF, = AF, +bJ.A*dZ'* (5)
0

Equations (2), (4) and (5) give the average velocity of the dislocations [8,9]:

AR .. b %
v=2v_ exp| ——= |sinh — | A"dz”
: p( k.Tj k.T;[ ©)
which at small t” gives

A, T°b AF,
V=2V exp| —
‘)T P kT @)

a linear relation between stress and velocity. At large 7 the velocity becomes
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AR, — b]j Adr”
0

V=V, exp| — = @®)

A comparison with (2) shows

b

am("}

Y

A 1 (aAFj kT c
T,p

or' ). b| or )

It is to be noted that Eqg. (9) is valid only if the hyperbolic sine function in (6) can be
approximated by an exponential function.

In the literature the quantity A'b is sometimes called the “activation volume”. To avoid
confusion with the activation volume defined as the pressure derivative of the standard free
energy of activation, the term “activation area” is defined by Eq. (9).

Similarly other thermodynamic functions can be derived [6,7]:

The ,,Activation Enthalpy*:
or”
AH = —b.A'T| =
( oT J (10)
p.v/v,

Activation area of Cd single crystals with various amount of Zn has been measured in wide
stress and temperature range (1,5 K — 380 K) [10,11]. The values of A" and its temperature
and stress dependence indicate in the temperature regions ~ 20 K and ~ 200 K changes of
mechanisms controlling movement of dislocations.

2.2. The velocity - stress relation.
It was undoubtedly established that activation area decreases with increasing stress [12,13]

When the activation area can be approximated by an inverse proportionality to the stress, a
velocity — stress relation results:

v=8(") (11)
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In this equation B and n are independent of stress but may be functions of both temperature
and pressure. Parameter n can be defined by the equation

n_(amvj _TThA
oz )i, KT 12

Equation (12) indicates that temperature dependence n(T) can be similar as A"(T) good
qualitative criterion of dislocations mechanisms change (the first one is better because n is
usually stress independent — Figs.6,7,and 8. [13])..
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of the last square method (Cd + 0.0584 at.%Zn, T=77K)
— - The adding of the load increment, ---- the removing of the load increment

The velocity stress exponent n for Cd single crystals with various concentration of Zn solute
atoms had been measured in the wide temperature interval (1,5 K — 380 K). A repeated creep
experiment was used [11,12] and in every creep step one or more values of n were measured
according to equation (14):

&
Aln =2
n=|—a
Alnz” (13)
T.p
T T T T T T T
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Fig.6. The stress dependence of the stress sensitivity parameter n
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Fig.7.The stress dependence of the stress sensitivity parameter n (Cd +
0.0027at.%Zn, T=296K) - - the beginning of the primary creep step,
« - the end of the primary creep step.
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According to basic equation of plastic deformation (Orowan) we can write
e=bv.p (14)

( € is velocity of deformation and v resp. p is velocity resp. density of movable dislocations.
We suppose that z does not change in the course of small change of z, i.e 4 m ~ A7 and
= const).

As we can see from the Fig.6,7 and 8., the stress dependence of n is approximately constant.
The temperature dependence of n is for various CdZn alloys shown in the Fig.9.. At that
figure we can notice two peaks (at the temperature T ~ 12 K and T ~ 200 K).

800 — TR SR £ =T T T T

n L

. 0,67at%zn .
wofft e G 1
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0 00 200 300

Fig. 9. Temperature dependence of the stress velocity exponent n.

3. CONCLUSION

According to our experimental results we can conclude, that

- activation area A" and the velocity stress exponent n can be comparatively easy
measured in creep deformation,

- velocity stress exponent n is stress independent,

- the temperature dependence n = n(T) indicate changes of mechanisms, controlling
velocity of dislocations (at the temperature interval T ~ 12 K it is quasidynamical
mechanism [14] and at the temperature interval T ~ 200 K ( = 0,3 Tm ) it is the
dynamic strain aging region. [12,13] )

103



REFERENCES

[1] BECKER, R.: Physikalische Zeitschrift 26, 919 (1925)

[2] EYRING, H.J.: J. Chem. Phys. 4, 283, (1936)

[3] KAUZMANN, W.: Trans. AIME, 143, 57, (1941)

[4] SEITZ, F., READ, T.A.: J. Appl. Phys. 12, 100, 170, 470, 538 (1941)
[5] NOVICK, A.S., MACHLUJ, E.S.: J. Appl. Phys. 18, 79, (1947)

[6] ROSENFIELD, A.R., HAHN, G.T., BEMENT, A.L., JAFFEE, R.1.: Dislocation
Dynamics, Mc Graw Hill, 1967.

[71 MARTIN, J.L., CAILLARD, D.: Thermally Activated Mechanisms in Crystal
Plasticity. Pergamon Press, 2003.

[8] CHRISTIAN, JW., MASTERS, B.C.,: Proc. Roy. Soc. A 281, 240 (1964)
[9] Li, J.C.M.: Trans. AIME, 233, 219 (1965)

[10] HAMERSKY, M., NAVRATIL, V., LUKAC, P., SOLDATOV, V.P. STARTSEV, V.I.
MetallicMaterials, Bratislava, 3s. 20-26. (1982).

[11] HAMERSKY, M., NAVRATIL, V., STARTSEV, V.l.: Czech. J. Phys., B31, 6's. (1981)
[12] LUKAC, P., STULIKOVA, I., NAVRATIL, V.: Czech. J. Phys., B31s. pp. 130-134.
(1981).

[13] NAVRATIL, V., NOVOTNA, J.:. Matematika tepeln& aktivované plastické deformace
kovu. In Aplimat 6th. Int. Conf.. 2007. vyd. Bratislava : Faculty of Mechanical
Engineering Slovak University of Technology in Bratislava, 2007. od s. 125-130, 6 s.

[14] KAMADA, R., YOSHIZAWA |.: J.Phys Soc.Japan 31, 1056-1068, (1971).

104


http://www.is.muni.cz/lide?uco=129
http://www.is.muni.cz/lide?uco=129
http://www.is.muni.cz/lide?uco=1363

Weakly Delayed Systems of Linear Discrete Equations in R®

Jan Safaiik

Faculty of Civil Engineering,
Faculty of Electrical Engineering and Communication,
Brno University of Technology, Brno, Czech Republic.
safarik.j@fce.vutbr.cz

Josef Diblik
Faculty of Civil Engineering,

Faculty of Electrical Engineering and Communication,
Brno University of Technology, Brno, Czech Republic.
diblik.j@fce.vutbr.cz

Hana Halfarova

Faculty of Civil Engineering, Brno University of Technology,
Brno, Czech Republic.
halfarova.h@fce.vutbr.cz

Abstract: The purpose of this paper is to provide criteria for a linear discrete system in R? with
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1 Weakly Delayed Systems

We use the following notation throughout this paper: For integers s, ¢, s < ¢, we define a set
7% :={s,s+1,...,q — 1,q}. Similarly, we define a set Z> := {s,s+ 1,... }. In this paper,
we deal with the discrete systems

x(k+1) = Az(k) + Bx(k — m) (1)

where m > 0 are fixed integers, k € Z5°, A = (a;;) and B = (b;;), are constant [ x [ matrices,
andx: 2>, — R, 1> 2.

In [2], linear weakly delayed systems were defined for planar systems. This definition can be
applied to [-dimensional systems as follows.

Definition 1 System (1) is called weakly delayed if the characteristic equations for (1) and for
the system without delay

x(k+1) = Az (k)
have identical roots, that is, if, for every A € C \ {0},

det (A+X""B — \) =det (A—\I).
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2 Criteria of Weakly Delayed Systems

In [2], the authors derive necessary and sufficient conditions for (1) with [ = 2 to be a weakly
delayed system:

Theorem 1 System (1) is a system with weak delay if and only if the following three conditions
hold simultaneously:

b1y + by = 0,
bi1 b1y

=0,
ba1  bao

@11 a2 + b1 b2 —0.
ba1  ba Q21 Q22

Moreover, in [4] Theorem 1 is extended to the case [ = 3.

Theorem 2 ([4]) Let | = 3 in (1). Then, (1) is a weakly delayed system if and only if conditi-
ons (2)—(7) below hold:

b11 + bae + b33 = 0, (2)
b1 bz bis
ba1 baa bog| =0, 3)
bsi b3z bs3
a1 daiz2 A3 b1 bio b13 b1 b2 b13
bai  bag  bog| + |a21 aze ags|+ [bar by baz| =0, 4)
bsi  bsa  bsg bsi  bsa  bss az1 asz g3

b1 bz i3 bi1 bz bis 1 0 O
bar bag baz|+|0 1 0|4 |ba b baz| =0, (5)
0 0 1 bsi b3z bss bsi b3z bss

11 A2 13 a1; a1z ais biin bz bis
a1 Gz o3| + |bar bao baz| 4 |a2i azx ass| =0, (6)
b31  bsa a3 a31 a3z as3 a31 32 a3z3
11 Q12 A13 a1 G12 a13 1 0 0

bor Doy baz| + | 0 I 0|+ a2 ax a3
0 0 1 b31 b3y D33 b31 b3y b33
(7)
bir bz b3 bir bz bi3 r 0 0
+ |az1 aze az|+ |0 I 0|+ by Doy byg| =0.
0 0 1 31 daz2 ass 31 az2 Ass

In the following part of the paper, considering equation (1) with [ = 3, we will simplify
conditions (2)—(7) for every possible Jordan canonical form of the matrix A.
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3 Jordan Canonical Forms of A and Criteria for Weakly De-
layed Systems

It is known that, for every matrix A, there exists a nonsingular matrix S transforming it to the
corresponding Jordan matrix form A*. This means that

A* = 871AS
where A* has the following seven possible forms (denoted below as Ay, ..., A7), depending on
the roots of the characteristic equation
det (A—AI)=0. (8)

Throughout the remaining part of the paper we assume that [ = 3 in (1).
If (8) has three real distinct roots A{, A2, Az, then

A 000
Ar=10 X 0], )
0 0 X3
if (8) has one double real root A;, Ay = A3, then
A 0 0
Ay =10 X O (10)
0 0 X
or
A 0 0
As=10 X 1], (11)
0 0 X
in the case of one triple real root A = A 3 3, the following forms are possible
A0 0
A;=(10 X 0], (12)
0 0 X
A1 0
As=10 X 0], (13)
0 0 A
A1 0
As=10 X 1 (14)
0 0 M\

and, finally, if one root is real and two roots are complex conjugate, i.e. Ay 3 = p =+ ig, with
q # 0, then

0
p (15)
—q
In this part, we will simplify the general conditions (2)—(7) for each of the Jordan forms (9)—
(15).

Ar =

o O >
N R O
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3.1 Criterion for Weakly Delayed Systems in the Case (9)

Consider system (1) with the matrix A = A4, i.e.,
z(k +1) = Ayz(k) + Bx(k — m). (16)
In [3] the following result is formulated.

Theorem 3 System (16) is a weakly delayed system if and only if

bi1 = bagy = b33 = 0, (17)

b12b23b31 + b13b21b32 = 0, (18)

b12b21 + b13b31 + bagbze = 0, (19)
A3b12b21 + Aab13bzr + A1bagbza = 0. (20)

We will show the proof of Theorem 3 as it is not given in [3].

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

/\1 (b22b33 - b23b32) + >\2<b11b33 - b13b31) + )\3(b11b22 - b12b21) =0

because
11 Q12 413 bii bio b13 bi1 b2 b13
ba1 Do b23 + |a21 ag ag3| + ba1  bao 523 =
bsi by b3z bsi  bsa  bss a31 dazz2 G33

A 00 b1 bia i3 b1 bia bis

= b21 622 b23 + O AQ O + b21 b22 b23 =

bs1 b3y bss bs1 b3z bss 0 0 A3

=M1 (baobsg — bagbsa) + Aa(b11bss — bi3bsi) + Ag(bi1bag — bigber) =
=0.

From (6) we get

A2 A3b11 + A1 Asbag + A1 Aabss = 0 (21)
since
11 a2 13 @11 a2 13 bi1 b2 b3
a1 Gz Qo3| + |bar baa bag| 4 |ag1 ax as| =
bsi bsa a3 a31 dzz (33 a31 a3z 33

)\1 0 0 )\1 0 0 b11 b12 b13
- 0 )\2 0 + b21 622 b23 + 0 /\2 O -
b31 b32 633 0 0 /\3 0 0 )\3

=X A3011 + A1 A3b22 + A1 Aabss = 0.

From (7) we get
(A2 + A3)b11 + (A1 + A3)baz + (A1 + A2)bss =0 (22)
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since

a1; aiz2 a3 ailz aiz Aas 1 0 0

bai baa bog|+ |0 1 0|+ |aa a2 a

0 0 1 b3i b3z bss bsi b3y bss
bii biz bis bii bz bi3 10 0

+lag1 az ax|+ |0 1 0|4 |ba1 baa bog| =
0 0 1 31 a3z G33 a31 dzz2 G33

A O 0 A O 0 1 0 0

=1lby; byy bos|+|0 1 O0|+]0 A O

0 0 1 bsi bsz  bss bsi b3y bss
b1 bia bis b1 bia b3 1 0 0

+10 X O|4+|0 1 0|+ by by bog| =
0 0 1 0 0 X 0 0 X3

=Ny + A3)b11 + (A1 + A3)bag + (A1 + A2)bsz = 0.
From (2), (21) and (22) we deduce

b + by + bz = 0,
AoAszbir  + AAzbog  + AAgbss = 0, (23)
(A2 +A3)bin + (A1+A3)baa + (A1 +A2)bgs = 0.

The determinant of the system (23) is different from zero since

1 1 1
)\2)\3 )\1)\3 )\1)\2 = )\1)\3()\1 + )\2) — )\1)\2()\1 + )\3)—
(A2 +A3) (At +A3) (A1 + o)
—MA3( A1+ Ag) + At A (Ae + Az) + Ao A + A3) — MAs( Ao + A3) =
= (O = 2) (O — M) (e — Ag) £ 0.

Consequently, (23) has only the trivial solution

bi1 = bay = b33 = 0. (24)
Therefore,
0 bz bis
b1 bsa 0

Applying (24) to (3)—(7), after simplification, we get (18)—(20).

Example 1 Assume that A; = diag(0, 1, 2),
0 -1 2
B=|-2 0 2
-2 1 0

It is easy to verify that conditions (17)—(20) are valid and system (16) is weakly delayed.
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3.2 Criterion for Weakly Delayed Systems in the Case (10)
Consider system (1) with the matrix A = A,, i.e.,
z(k+ 1) = Asx(k) + Bx(k — m).

Theorem 4 System (25) is a weakly delayed system if and only if

b1 =0,

by + b3z = 0,

bi2ba1 + bi3bs = 0,

baabss + bazbza = 0,

b12023b31 + b13b21b32 — b13b22b31 — b12b21b33 = 0.

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

)\1 (622633 - 623632) + )\2(b11b22 + b11b33 - b12b21 - b13b31> =0

because
11 a2 a3 b1 Do b13 bi1 bio b13
bai  bae  baz| + |a21 a2 ag3| 4 |bar b beg| =
bs1 b3z b3z bsi b3y bss a3y daz2 G33

A 000 bii b1z big bii bz bis
=|ba1 bag baz|+ |0 Ag 0|4 |bar by ba3| =
bsi b3z bss bs1 b3z bss 0 0 X

:)\1 (b22633 - 623632) + )\2(b11b33 - b13b31) + )\Z(blleZ - b12621) =

:/\1(b22b33 - b23b32) + )\2(b11b22 + b11b33 - b12b21 - b13b31) = 0.

From (6) we get
A3b11 + At Ag(bag + b3z) = 0

since
11 daiz2 A3 aix aiz a3 b1 b2 513
Qo1 Qo2 Qo3| + ba1  bao b23 + (G21 Q22 Qo3| =
bsi  bsa  bss a31 azz 33 ag1 asz g3

A O 0 MO 0 b1 b2 bis
=0 X 0|4 by boo b23 +10 A 0=
b31 b3y bas 0 0 Ao 0 0 Ao

=1 Aabss + At Aobog + A3bi1 = A3b1; + A Ao (bay + bss) = 0.

From (7) we get
A1(baz + bs3) 4+ A2(2b11 + bag + b3z) =0
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since

ajp ajp a3 aj; a2 a3 r 0 0
bor Doy baz| + | 0 I 0|+ ]a2 a a3
0 0 1 b31  b3p b33 b31  bzp D33
bir bz b3 birn bz b3 I 0 0
+lag1 axp ax|+ |0 1 0|+ by by boz| =
0 0 1 azp asp ass asp asp ass

A O 0 A O 0 1 0 0
=|by; bag bo3|+ 1|0 1 O[+]0 X O
0 0 1 bs1 b3z bss bsi  bsa  bss

bll b12 bl3 bll b12 b13 1 O 0
+10 X O|4+10 1 0|4 |byy bay bos| =
0 0 1 0 0 X 0 0 X

=A1bag + A1bss + Aabsg 4+ Aabi1 + Aabiy + Aabeg =
=M1 (bag + b33) + A2(2b11 + bag + b33) = 0.

From (2) we get bys + b33 = —by1 and (32) yields

)\gbll + )\1)\2(622 + b33) —
A2byy + Mda(—byy) =
b11>\2()\2 - >\1)

0,
0,
0.
Since Ay — A1 # 0, we get

)\2[)11 - O

Assume Ay = 0. Then, from (33) we have A;(byg + b33) = 0 = A\1by; = 0. Because \; # 0, we
get
bll == 0 (34)

From (2), using (34), we have
b22 + b33 = 0.

From (31) we get
b22b33 - b23b23 = 0. (35)

Substitute (34) and (35) into (5). We get
biaba1 + D133 = 0.

If Ay # 0, we get the same conditions (26)—(29). Condition (3) can be simplified to (30).

3.3 Criterion for Weakly Delayed Systems in the Case (11)

Consider system (1) with the matrix A = Ag, i.e.,

z(k + 1) = Asz(k) + Bx(k —m). (36)
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Theorem 5 System (36) is a weakly delayed system if and only if

b1 =0,

bao + b33 = 0,

bzz = 0,

(A1 — A2)b2abss + b1abs1 = 0,
b12b23b31 — b13bazb3y — b12bo1bsz = 0. (37)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

A1 (bazbsz — bazbsz) + Aa(b11bag + b11b33 — biabay — bisbs)
— (b11bsy — biabz) =0 (38)

because
ail aiz Aas b1 bio 513 b1 bio b13
bai by bag| 4+ |a21 a2 ag3| 4 |bar baa beg| =
bs1 b3z bss bs1 b3z bss a3; Aaszz2 33

At 00 bir bz biz|  |bun b b3

=1|ba1 bap baz| +|0 Ay 1|+ |by by bog| =

bs1 b3z b33| |ba1 b3z bs3 0 0 X

=A1(ba2bsg — basbsa) 4 Aa(b11b3g — bigbsi) — (b11bs2 — b12bs1)
+ Aa(b11bay — biobay) =

=A1(baabsg — basbsa) 4+ Aa(b11b2g + b11bsg — biabar — bisbsy)
— (b11bsz — bi2bs;) = 0.

From (6) we get

2
Asb11 + A Aa(bag + bgz) — Arbse =0 (39)
since
@11 Aaiz2 Gi3 @11 a2 13 bi1 b2 b3
a1 Gog Qo3| + |bar baa bag| 4 |a1 ag ags| =
bsi  bsa  bss a31 dazz G33 az1 asz 33

/\1 0 0 )\1 0 0 bll b12 b13

— 0 )\2 1 —|— bgl b22 b23 + 0 /\2 1 ==
bz b3y bss 0 0 X 0 0 A
=M1 Aabs3 — A1bsy + A Agboy + A3byy =

=A3b11 + A Aa(baa + bzz) — Aibsg = 0.

From (7) we get
A1 (baz + b33) + Aa(2b11 + bog + b33) — bse =0 (40)

since

11 daiz2 A3 aix aiz Az 1 0 0
bay bag baz|+ | 0O 1 0|+ |a21 a2 asgs
0 0 1 bsi  bsa  bss bsi bz bss
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bi1 b2 bis b1 bz bis 1 0 O
+ la21 az a4+ |0 1 0|4 |bar baa bog| =
0 0 1 as; asy as3 asy asy ass3

A 0 0 A0 O 1 0 0
= bgl b22 b23 +10 1 O|+1]0 )\2 1
0 0 1 b31 b32 b33 b31 b32 b33

bii bz bis bii bz bis 1 0 0
+10 Ao 1/+1]0 1 0|4 |byy baa bog| =
0O 0 1 0O 0 X 0O 0 X

=A1bag + A1bs3 + Aabsg — b3y + Aabiy + Aabip + Aabag =
=MA1(bag + b33) + Aa(2b11 + bag + bs3) — bsa = 0.

From (2) we have byy + b33 = —by;. Moreover, from (40) we get

A1(bag + b33) + Aa(2b11 + bag + bs3) — bsa = 0,
A1(—=b11) + Aabiy — b3 = 0,
bll<)\2 - )\1) - b32 - O (41)

From the last expression, we obtain bss = by (Ay — A;). Substituting it into (39), we have

)\gbn + M A2 (=b11) — Mbii (A2 — A) =0,
bn(/\f — 21 + /\g) =0,
bll()\l — )\2)2 - 0
Because (\; — \2)? # 0, we derive
by = 0. 42)
From (2), utilizing (42), we have
b22 + 533 = 0.
Similarly, from (41), using (42), we obtain
632 - 0 (43)

Substitute (42) and (43) into (5). We get
—b12021 — b13b31 + baobzs = 0 = bagbsz = biabay + b13bs;.
Substituting the last expression into (38) we get

A (bazbss) + Aa(—biabar — bisbsy) + biabsy = 0,
A1 (bazbss) + Aa(—bagbss) + bi2bs; = 0,
(A1 — A2)baabss + biabgy = 0.

Condition (3) can easily be simplified to (37).

113



3.4 Criterion for Weakly Delayed Systems in the Case (12)

Consider system (1) with the matrix A = Ay, i.e.,
z(k+1) = Ayz(k) + Bx(k — m).
Theorem 6 System (44) is a weakly delayed system if and only if
bi1 + bag + b3z = 0,

b11bag + b11b33 + bagbsz — biabay — bigbs — bagbsa = 0,
b11D92b33 + b12b2gbsy + Digbaibsa — bi3basbsy — b1abaibss — b11baszbse = 0.

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

A(b11b22 + b11b33 + baobsg — b12bay — bagbss — bisbsy) = 0

because
11 Q2 Q13 bii bz big bii bz bis
bai  baa  bag| + |a21 aga agg| + |ba1 baa bas| =
bsi b3z bss bsi b3y bss a31 a3z Aas3

A0 O bi1 bz bis bi1 bz i3

=|ba1 b baz|+ |0 XA O|+4 |bar baa bos| =

bsi b3y bss bsi b3z bss 0 0 A

=M(ba2bss — bagbsa) + A(b11bs3 — bi3bsy) + A(b11baa — biabor) =
=A(b11b22 + b11b3s + baabss — biabay — bagbsa — bigbsy) = 0.

From (6) we get
)\2(b11 + b22 + 633) =0

since
@11 a2 13 11 a2 13 bii bz big
a1 Gz Qo3| + |ba1 baa bag| 4 |ag1 ax as| =
bsi  bsa a3 a31 Q32 as3 a31 32 a3s3

A0 O A0 0 b1 b1a b3

=10 X O]4+1byg by b3/ +|0 X 0=

bs1 b3z D33 0 0 X 0 0 A
=0.

=\2b33 + A2boy + A2by; = )\2(511 + bag + b33)

From (7) we get
2\(b11 + bag + b33) =0

since

11 daiz2 A3 aixz aiz Az 1 0 0
bay bag baz|+ | 0O 1 0|+ |a21 a2 asgs
0 0 1 bsi  bsa  bss bsi bz bss
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bi1 b2 bis b1 bz bis 1 0 O
+ la21 az a4+ |0 1 0|4 |bar baa bog| =
0 0 1 as; asy as3 asy asy ass3

A0 0 A0 0 1 0 0
=1|bay by bos3|+ 1|0 1 0O|+1|0 A 0
0 0 1 b31 b32 b33 b31 b32 b33

bii bz big bii bz bis 1 0 O
+10 X O04+10 1 0|4 |byy baa bog| =
0O O 1 0O 0 A 0O 0 X

=MAboo + Absz + Ab33 + b1 4+ Ab1y + Abyy =
=2A(b11 + ba + b33) = 0.

It is easy to see that (47) as well as (48) are valid because (2) holds, (46) is valid because (5)
holds. Condition (45) is equivalent to (3).

3.5 Ciriterion for Weakly Delayed Systems in the Case (13)

Consider system (1) with the matrix A = Aj, i.e.,
z(k +1) = Asz(k) + Bx(k —m). (49)

Theorem 7 System (49) is a weakly delayed system if and only if

b11 + by + b3z = 0,

ba1 =0,

basbs1 = 0,
b11b22 + b11b33 + baabzs — b13bs1 — bagbza = 0, (50)
b11b22b33 — b13ba2b31 — b11ba3b3a = 0. (51)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

A(D11bg + b11b33 + baobsg — biabay — bizbzy — bazbss)
— (ba1bss — bysbsy) =0 (52)

because
11 aiz2 A3 b1 bio b13 b1 bia 513
bai  bag bog| 4 |a21 a2 ag3| + |bar baa Do) =
bs1 b3y bss bs1 b3z bsg azyp azz as3

A1 0 bii bz big bii bz big
=|ba1 by baz|+ |0 XA O|+4 |ba1 by bo3| =
bsi b3z bss b3i b3z bss 0 0 A

:)\(b22b33 - b23b32) - (b21b33 - b23b31> + A(b11b33 - b13b31)
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+ A(b11bag — b1obay) =
=A(b11b2g + b11b33 + basbss — biabay — bisbsy — basbso)
— (ba1bs3 — basbsy) = 0.

From (6) we get

2
A (D11 4 bag + bs3) — Abay = 0 (53)
since
@11 a2 13 11 a2 13 bi1 b2 b3
a1 Qoo Qo3| + |bar baa bog| 4 |ag1 ax ags| =
bsi  bsa  bss a31 dazz G33 az1 dazz G33

A1 0 A1 0 bii bia bis
- 0 )\ 0 —|— b21 bQQ b23 + 0 )\ O -
bs; b3z bs3 0O 0 A 0 0 A

=\2bsz + A2boy — Abay + A\2by; = )\2(511 + bag + b33) — Abay = 0.

From (7) we get
2A(b11 + oz + b33) — a1 =0 (54)

since

11 daiz2 A3 aix aiz Az 1 0 0
bar bag basz|+ | 0O 1 0|+ |a21 a2 asgs
0 0 1 bsi  bsa  bss bsi  bsa  bss
b1 b2 bis b1 bz big 1 0 O
+ la21 az a4+ |0 1 0|4 |bar baa bog| =
0 0 1 as; asy as3 azy asy ass3
A1 0 A1 0 1 0 0
=1|bay by bos|+ 1|0 1 0O|+1|0 A 0
0 0 1 bs1 b3y bss bs1 b3z bss
bii bz big bii bz big 1 0 0
+10 X O0O|4+10 1 0]+ |bar bag bog| =
0o 0 1 0O 0 X 0O 0 X
:)\bgg — b21 ‘|— )\b33 + )\b33 + )\bn + )\bll + )\b22 -
=2A(b11 + bog + b3z) — b1 = 0.

If (2) holds, we get
ba1 = 0. (55)
Moreover, (53) holds because of (54). From (5) and (55), then, (52) yields
bazbs1 = 0.
Equation (5) can be simplified to (50). Condition (51) can be obtained from (3) using the

equation derived above.
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3.6 Criterion for Weakly Delayed Systems in the Case (14)

Consider system (1) with the matrix A = Ag, i.e.,
z(k+ 1) = Agz(k) + Bx(k —m). (56)

Theorem 8 System (560) is a weakly delayed system if and only if

b11 + by + b3z = 0,

ba1 + b3y = 0,

bs1 =0,
b21b33 + b11b32 = 0, (57)
b11b22 + b11b33 + bazbzz — b12bay — bagbza = 0, (53)
b11b22b33 + b13b21b32 — b12ba1b3z — b11basbse = 0. (59)

Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

A(D11bag + b11b33 + baobss — biabay — bi3bsy — bagbsa)
— (b11b32 + ba1bss — biobsy — basbsy) =0 (60)

because
11 aiz2 A3 bi1 bio bl3 b1 bio 513
bai  bag  bog| 4 |a21 a2 ag3| + |bar baa bos| =
bs1 b3y bss bs1 b3z bss az1p azz 33

A1 0 bir bz bi3 bir bz b3
=1|ba1 bap baz| +|0 A 1|+ |by by bog| =
bs1 b3z b33 b1 b32 D33 0 0 A
—A(basbss — basbsz) — (barbss — basbsy) + A(binbss — bysbsn)
— (b11bs2 — b12bs1) + A(b11bag — bigbor) =
=A(b11b22 + b11bsg + basbss — biobay — bisbsy — basbsz)
— (b11b32 + ba1bsg — b12bsy — bagbsi) = 0.

From (6) we get

/\2(511 + bog + bs3) — A(ba1 + b32) + b33 =0 (61)
since
11 aiz2 A3 aix aiz2 A3 b1 bio 513
a1 @ agz| + |bar baa baz| + (a1 aze ags| =
bs1 b3y bss a31 dasz2 G33 a3y azz2 as3

A1 0 A1 0 b1 b2 b3
=10 X 1 |+1by bag bos|+]0 X 1=
b3y b3z D33 0 0 X 0 0 A

:)\2b33 - )\b32 + b31 + )\21722 - )\b21 ‘|— )\2[)11
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:)\2(b11 + bag + b33) — A(ba1 + boy) + b3; = 0.

From (7) we get
2A(b11 + baa + b33) — (ba1 + b32) =0

since

@11 a2 Q13 11 Qa2 Q13 1 0 0
bay bag baz|+ | 0O 1 0]+ |a az ag
0 0 1 bsi b3z bss bsi  bsa  bss
bi1 bz bis b1 bz big 1 0 0
+ laz1 az a4+ |0 1 0|4 |bar baa bog| =
0o 0 1 azy Gz a33 azy Gz a33
A 1 0 A 1 0 1 0 0
= bgl b22 b23 +10 1 O|+1]0 A 1
0 0 1 bsi  bza  bss bs1  bsa  bss
b1 bia bis b1 bia bis 1 0 0
+10 A 11+10 1 0|+ |ba1 boy boz| =
0 0 1 0 0 A 0 0 A
=2A(b11 + bag + b3z) — (ba1 + b32) = 0.

If (2) holds, we get

from (62). Moreover, from (61) we get
b31 = O

(62)

(63)

(64)

using (2) and (63). From (5) and (64), then, (60) yields (57). Equation (5) can be simplified

to (58), equation (3) can be simplified to (59).

3.7 Criterion for Weakly Delayed Systems in the Case (15)

Consider system (1) with the matrix A = Ag, i.e.,
z(k +1) = Azz(k) + Bx(k —m).

Theorem 9 System (65) is a weakly delayed system if and only if

bll - 07
bas + b3z = 0,
baz — b3z = 0,

622b33 - b12b21 - bl3b31 - b23b32 = 07
()‘ - p)(b12b21 + b13b31> + Q(b12b31 - b13b21) = 07
b12b23b31 + bleleSZ - 6136221731 - b12b21b33 = 0.

118

(65)

(66)



Proof. It is possible to simplify conditions (4), (6) and (7). From (4) we get

A(baobss — basbsa) + p(b11b2g + b11bss — biabay — by3bsy)
+ q(b11bag + byabsy — byibsg — bysbay) =0 (67)

because
a11 a2 Q13 bii bz b3 bii bz bis
bar  bag  bag| + |a2r aga agg| + |ba1 baa bas| =
bsi b3z bss bsi  bsa  bss 31 a3z as3

A0 0 bir b1z b3 bir bz b3

=1lbo1 bya bzl +|0 p q |+ |bax by boz| =

bs1 b3z b33| |bs1 b3z bs3 0 —¢ p

:A(b2zb33 - b23b32) + p(b11b33 - 513531) - Q(b11b32 - 512531)
+ q(b11b23 — b13bor) 4 p(b11b2a — b1obo1) =

=A(baabsg — bagbsa) + p(b11baa + b11bss — biabay — bisbsy)
+ q(b11b2g + bi2bsy — bi1bsa — bisbar) = 0.

From (6) we get

A(p(baa + b33) + q(bas — b32)) + by (p*> + ¢*) = 0 (68)
since

@11 Aaiz2 i3 @11 a2 Q13 bi1 b2 b3

a1 Goa Qo3| + |bar baa bog| + |ar ax as| =

bsi  bsa  bss a31 daszz G33 az1 asz 33

A0 0 A0 0 bir bz bis
=10 p q|+|ba by b3 +]|0 p q|=
bsi  bsa bss 0 —q p 0 —q p

=\(pbss — qbs2) + A(pbaz + qbas) + 511(]?2 + C]2)

=A(p(baz + bss) + q(bas — b)) + b (p* + ¢*) = 0
From (7) we get
A(bag + b33) + p(2011 + bag + bss) + q(bag — b32) = 0 (69)
since
ail G2 Qi3 ail G2 Qi3 1 0 0

bor Doy baz| + | 0 I 0|+ ]a2 ax a3
0 0 1 b31  bzp D33 b31 b3z D33
bii bz b3 bin bz b3 I 0 0
+lag1 ax ax|+ |0 1 0|+ by by baz| =
0 0 1 aszp asp ass asp asp as3
A0 0 A0 O 1 0 0
= b1 byo b3 +|0 1 O(+]|0 p ¢
0 0 1 b31 b3y b33 bs1 b3z b33
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bll b12 b13 bll bl2 b13 1 O O
+ 0 P q + 0 1 0 + bgl bgg b23 =
0O 0 1 0 —q p 0 —q p

=Abay + Absz + pbsz — qbsa + pbi1 + pbi1 + pbaz + qbaz =
=A(ba2 + bs33) + p(2b11 + Do + bs3) + q(bas — bsa) = 0.
From (2), we have bys + b33 = —b11. Expression (69) yields
A(b2a + bs3) + p(2b11 + by + ba3) + q(bs — b3z) = 0,
A(=b11) + pbi1 — q(bag — b32) = 0,
—b11(A = p) — q(baz — bsz) = 0.
From the last expression we have q(bas — b32) = (A — p)by;1. A substitution into (68) yields
A(p(baz + bss) + q(bag — bsa)) + b (p° + ¢°) =0,
Ap(=bi1) + Abii(A —p) + 511(]?2 + q2) =0,
bu (X = 2Xp +p° +¢°) =0,
bin(A—p)>+¢*)?* = 0.

Since (A — p)? + ¢*)% # 0, we get

by = 0. (70)
From (2), utilizing (70), we derive
baa + b3z = 0. (71)
Substituting (70) and (71) into (68), we have
baz — b3a = 0.

Simplifying (5) leads to

(b11bog — b12bar) + (b11bss — bisbsi) + (baabss — basbse) = 0,
—b12ba1 — bi3bs + bagbssz — bagbsy = 0.

Then, from the last expression, we get
baobsg — bazbsa = biabay + D13bs;.
Substituting it together with (70) into (67), we obtain

A(b12ba1 + bi3bs1) + p(—biabar — bizbs1) + q(biabsr — bizber) =0,
(b12ba1 + b13bz1) (A — p) + q(b12bs1 — bigbar) = 0.
Condition (3) can be simplified to (66).

4 Conclusion

Weakly delayed three-dimensional systems of linear discrete equations with constant coeffici-
ents and constant delays were considered and criteria for systems (1), with [ = 3, to be weakly
delayed were derived. It is an open question how to derive criteria for systems with several
delays. For further results related to weakly delayed systems, we refer, e.g., to [1, 5, 6]
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Abstract: Sufficient conditions of interval absolute stability of nonlinear control systems
described in terms of systems of the ordinary differential equations with delay argument, and
also neutral type are obtained. The Lyapunov-Krasovskii functional method in the form of the
sum of a quadratic component and integrals from nonlinearity is used at construction of
statements.

Keywords: stability, Lyapunov’s method, deviating argument, nonlinear control systems.

INTRODUCTION

The actuality of absolute interval stability problem of the dynamical systems, mentioned in
the present paper, proves to be true as a lot of interesting reports at the international
congresses and conferences, and set of foreign publications, for example [1-6].

Problems of research of dynamical systems with it is inexact in the set parameters, or
moreover, with vectors of speeds (the right-hand side of systems of the differential equations),
accepting the values from some sets, interested researchers for a long time. Classical
(Lyapunov) stability means investigation of solutions at indignations by the initial data [7]. Its
various generalizations (uniform on time and phase variables, by parts variables,
asymptotical, exponential, orbital etc.) also meant the unequivocal set of the law of dynamics
of systems.

The solution of practical problems of control theory has caused occurrence concept “robust”
(or interval) stability. Originally under robust stability it was understood asymptotical stability
of the linear stationary differential equations of the higher order, under condition of a finding
of their coefficients in the set intervals some beforehand. Interesting fundamental necessary
and sufficient conditions of interval stability of the linear differential equations with it is
inexact in the set parameters have been obtained at papers of Kharitonov V.L. [8-11].
However, at distribution of the obtained results to the dynamical systems, on differences
equations and systems of the equations, systems with aftereffect, have arisen essential
difficulties.

The solution of control problems in linear systems leads to a finding of function (scalar
function) u(x), at which feedback system

X(t) = Ax(t) + bu(x(t))
should be asymptotical stable. Often this function depends on one scalar argument
representing a linear combination of phase co-ordinates, and some scalar function from the
first and third squares of a plane. Investigations of asymptotical stability of the systems
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u(x))= f (o)), o) =cx(),

i.e. systems

;<(t) = AX(t) +bf (o (1)), o(t) =c'x(t), t>0.
with function f (o), lying in the set sector, became known as the absolute stability
investigations of regulating (or control) systems.

Problems of control systems absolute stability have arisen in the middle of last century and
are connected with problems of stabilization of programmed control at the set structure of
control function [12,13,6]. The results giving absolute stability conditions, i.e. stability as a
whole the zero solution for the set class of nonlinearity have been obtained in two directions.

One approach of investigations here is, so-called “frequency method”, had development in
Yakubovich V.A., Gelig A.H., Leonov G.A. works [14-17]. At the heart of a method is a
study of behavior of some curve (“godograph”) lies in complex area.

Other, alternative approach which has had development in works by Barbashin E.A.,
Martynyuk A.A., and other, is the Lyapunov second (direct) method with function type of
“quadratic form plus integral from nonlinearity” [18-21].

Distribution of this method on systems with delay and neutral type has obtained in
Khusainov D.Ya. and Shatyrko A.V. works [22-25]. Sufficient conditions of absolute interval
stability have been constructed. At their construction the finite-dimensional method of
Lyapunov's functions with a condition of Razumikhin B.S. [26] was used. The condition of
Razumikhin B.S. facilitates construction of Lyapunov function. By means of this approach it
is possible to estimate influence of aftereffect, i.e. to obtain the conditions of absolute interval
stability depending from delay. However, the conditions of Razumikhin B.S. imposes rigid
enough restrictions on aftereffect. And their use not always is effective.

At this paper we will use an alternative method of Lyapunov-Krasovskii functionals
[6,11,27,28]. As the functionals the most effective are the integrated additives of a quadratic
type. At this approach the obtained estimations become simpler. However, here as a point of
phase space all piece of a trajectory is considered, therefore the approach does not allow to
estimate influence of delay on absolute stability. Besides, the total derivative represents the
quadratic form from phase co-ordinate and its prehistory. Therefore the matrix of the
quadratic form of a total derivative has twice the big dimension.

1. DIRECT CONTROL SYSTEMS WITH TIME-DELAY ARGUMENT

At this section we will consider the system of direct control described by the differential
equations with interval coefficients and with delay argument of next type

X(t) = (A+ AAX(L) + (B + AB)X(t — 7) + bf (o (1)) @
o(t) =c'x(t)

Elements of matrices AA and AB also accept values from the fixed intervals
AA={aay | |aay|< ey, 1, j=1n,

.. — 2

AB = {Abij }’ ‘Abij‘ < B, 1, J=1n
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Nonlinear function f (o) satisfies to a “sector condition”
0< f(0)o <ko?. (3)

Definition. The system (1) is called absolutely interval stable if it is absolutely stable for
arbitrary matrices AA and AB from intervals (2).

Under absolute system stability we understand absolute stability of it trivial solution in sense
of classical definitions [12,13].

At Khusainov D.Ya. and Shatyrko A.V. earlier papers conditions of interval stability of
systems (1) with using of finite-dimensional Lyapunov's functions

o(x)

V() =x"Hx+ B [ £(&dé, o(x)=cx
have been obtained [22-25]. O

At the present paper we will construct conditions of interval stability of system (1) with the

help of Lyapunov-Krasovskii functional
0 o(t)
VIx(t)] = x" (t)Hx(t) + j X' (t+5s)Gx(t+s)ds+ j f(o)do, of(t)=c'x(t). (4)
= 0
We will use the following notations:
Aein )y Amax () - @ccordingly the minimum and maximum own numbers of a matrix,

0
|| -the Euclidean norm, |x(t)[, :{j|x(t+s)|2ds} ; [AA] = rrAlaxﬂAAl}, |AB| = rrAlgxﬂAB|},
= &j i
@ - zero-vector; ® - zero-matrix.
Let's preliminary consider system with delay without “interval perturbations”
X(t) = AX(t) + BX(t — 7) + bf (o (1)) )
o(t) =cTx(t)

Theorem 1. Let is exists the positive definite matrices G, H and parameter >0 at which
the matrix

~ATH-HA-G —-HB —[Hb+%(ﬁAT +I)c]_
S[G,H, S] = -B™H G ] (6)
—[Hb+%(,8AT + )]’ o' %—,Bch

is positive definite too. Then the system with delay without interval perturbations is
absolutely stable.

Proof. As function f (o) satisfies to a condition (3), then for functional (4) following bilateral
estimations are true

i (OO + Ay GXOI VDX P (H) + KB O + A @O ()
We will calculate a total derivative of functional along system solutions. We will obtain
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%v [x(t)]= [Ax(t) + Bx(t — 7) + bf (o ()] Hx(t) +

+ X' () H[AX(t) + Bx(t—7) + bf (o(t))]+ X" (1)Gx(t) - x" (t—7)Hx(t—7) +
B (o)) [Ax(t) + Bx(t—7) +bf (1))}

Or, using so-called S-procedure [16],

%V[x(t)] <" X" (t=2), F (@) BIG, H, AIXT ©,X t=7), F (o)) |

where i i
~-A"TH-HA-G —-HB —[Hb+%(ﬂAT+I)c]
S[G,H, ]= -B™H G 0
—[Hb+%(ﬁAT N %—ﬂch

If matrix S[G,H, ] is positive definite, than

%v[x(o] < (81, H, O + it — O +[£ o).

Thus, on the basis of Krasovskii weak theorem [28] if there are positive definite matricesG ,
H and S[G,H, ], at which

A (FOXOP <V IXOTE e (H) + KIS YO + A GYXOF.

%v (X)) ~min (S[G H. BIIXO)

then the system with delay (5) is absolutely stable.
Further we will obtain conditions of absolute interval stability of system (1).

Theorem 2. Let are exists the positive definite matrices G, H and parameter 5 >0, at which
the inequality is true

A (1. H, A1) A [T+ B+ p2aaf? ®

Then the system (1) is absolutely interval stable.

Proof. As appears from a type of functional (4), for it bilateral estimations (7) are fair. We
will calculate a total derivative of functional along solutions of system with “interval
perturbations”. We obtain

%V[x(t)] = (X" @)X (t-7), F e [G, H, AIxT )X (t-2), f (o)) +
+(XT (), X7 (t=2), F (o) ASIG, H, AIXT O (t-7), F (o (t)]

where ) i
AATH + HAA HAB % BAATC

AS[G,H,8]=| AB"H ¢} 0

% L’ AA o' 0

If matrix S[G,H, f] is positive definite,
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%v (X< e (SG, H, AN + = 2 +|F (0 0)2 )+
+2JAAIH[x(®) +2JABJH[x@)]x(t )] + AlaAe]x(®)] f ()]
From here we have
VIO i (STG, H. A1) - 2O -

~Jmin (SIG, H. BIx(t = )" = 2yin (SIG. H, A1) F (o ®)] +
+ 2AB|H]x(t)|x(t )|+ B|AAe|x®)] f (o)

Let's break the first composed on two one and we will present the right part of an inequality in
the form of the next sum

VX1 el (S16.H, 1) 2104 H e -
2JABJJHXO)]x(t — ) + Ain (SIG,H ATt ) |-
(516, H 51~ 2AAIH ) - AL ()
+ A (SIG, H, A1) (o)

where 0< a <1- some constant. Then, as appears from Sylvester’s criterion, performance of
inequalities will be a condition of absolute interval stability of system with delay

Amin(SIG, H, B1)-2JAA|H| >0,
|2 (SIG, H, 1) 2| AAH [J2rwia (SIG, H, 81) - (|AB[|H|F >0, )

(1= @) (516, H. 1)~ AN (ST, H, 51)— 5 AlAAe]> 0

Let the AA such that the first inequality is executed. We will copy the second and third
inequalities in a type
. (s
inin(SIG. H. 1)~ 2| A H [}in (SIG. H. 1)

1
. 4 laAfel)
Vnin (SIG, H, B1) - 2| AAH [} (SIG. H, B1)°

o

And, if the inequality is true
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lsim |

Vs (SIG. H, A1) 2| A H [ (SIG, H. A1)
1 + (laAelf
< - )
inin (SIG. H, 1) 2| AA[H |}i,in (SIG. H, B1)

than always exists 0 < a <1, at which the second and third inequalities (9) are true. And last
inequality is equivalent to the following

(AAIHIF +; A1AAe| <[ (STG. H. 51)~ 20 H o (STG, H. 1)
Let's copy it in a type
[min (SIG. H. AD ~ 2| AAH [ (SIG. H. B1)] -

1
(oI 3 sl 0
It will be always true, if

Jrin(S1G. H, B1)> [AAH |+ |8 H + B HI + 52 A cf

As from performance of last inequality performance of the first inequality (9) it is similar to
the theorem 1, we obtain the statement (8) of theorem 2.

2. DIRECT CONTROL SYSTEMS OF NEUTRAL TYPE

We will consider the direct control system described by the differential equations with
deviating argument of neutral type and with interval given coefficients of linear part

%(x(t) —Dx(t—7))=(A+AAX(t) + (B + AB)X(t — 7) +bf (o (t)) 10)

o(t) =cT x(t).
Here a matrix D satisfies to a condition “difference operator stability”, i.e. |D| <1, matrices

AA and AB also can accept the values from the fixed intervals (2). Nonlinear scalar function
of one argument f (o) lies in the set sector of the first and third quarter of coordinates plane

).

In the present section for construction of absolute interval stability conditions we will use the
functional of Lyapunov-Krasovskii of a following type

0 o(t)
VIx(®] = (x(t) - Dx(t—7))" H(x(t) - Dx(t—7))+ [ X" (t+s)Gx(t +s)ds+ B [ f(&)d&, (11)
= 0

Let's preliminary consider system without interval perturbations

i(x(t) — Dx(t—7))= AX(t) + Bx(t — 7) + bf (o (t))
dt (12)

a(t) =cTx(t)
Also we will obtain absolute stability conditions of system (12).
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Let's denote

H  HD
M= oy orhp |

“ATH-HA-G —HB+ATHD —[Hb+%(ﬁAT i I)c}

S[G,H,B]=|-B"H +D"HA B'HD+D'HB+G 0 (13)

)
—{Hb+%(ﬂAT +I)c} o7 %—,Bch

Theorem 3. Let there exists positive definite matricesG, H, and parameter >0, at which
the matrix S[G,H, £] also is positive definite. Then the system without interval perturbations

(12) is absolutely stable in the metrics |x(t)],.

Proof. For Lyapunov-Krasovskii fnctional (11) following bilateral estimations are true
i @YX <V KO < A MIH YO +[x(C =)+ Ay GO + Ao O (1)

or
A G)XOI VX < g M) + AP KO + A (M [H D[xct = ) +
+ Ao GYXO)[-

We will calculate a total derivative of functional (11) owing to system without interval
perturbations. We obtain the following

%v [x(t)]=[Ax(t) + Bx(t — ) + bf (o(t))]' H(x(t) + Dx(t— 7))+

+(x(t) — Dx(t —7) )" H[AX(t) + Bx(t — 7) +bf (o (t) )]+ X" (t)Gx(t) — X" (t—7)Gx(t—7) +
+ ff (o (t) )" [A(t) + Bx(t — 7) + bf (o (t))].
Or, using S-procedure [16],
%V[x(t)] <" ©).x" (t-7), F(e®)BIG, H, AIXT O, X t-7), F (o)) ,
where matrix S[G,H, 4] is defined in (13). If it is positive definite, then
%v[x(o] < (81, H, O + it = O + £ o).

Thus we have system of inequalities
i @YX <V DX < [ MIH])+ A [XOP + A G)CO)L.

%V [X(t)] < _ﬂ“min (S [G’ H ’ﬂux(t)|2'

And, on the basis of Krasovskii weak theorem [28], if there are positive definite matrices G,
H, at which matrix S[G,H, ] also it is positive definite, the system is absolutely stable in

the metrics |x(t)|,.
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Further we will obtain absolute interval stability conditions of system (10).

Theorem 4. Let there exists positive definite matrices G, H and parameter £ >0, at which
the next inequality is true

Zmin(S[G.H. D> (A H| + B[ H])+
#(AAJH |+ [ABHD]Y + (AB[JH |+ [AAJHD)
(15)

Then the system (10) is interval absolutely stable in the metrics |x(t)] , -

Proof. As appears from a type of functional (11), for it bilateral estimations (14) are true. We
will calculate a total derivative of functional along solution of system with “interval
perturbations”. We obtain

%V[x(t)] <—(x"(©).x" (t- 1), F (@) S[G, H. BIXT (). X (t—2), f (o)) +
+ (X7 (). €= 7), f (G ) ASIG, HIX™ @)X t=7), f (o(1))) .

where
AATH + HAA —~HAB+AAHD @
AS[G,H]=|-AB"H +D"HAA ABTHD+D'HAB 4|.
A A 0

if S[G,H, 8] is positive definite, then
%v [X(®)]< = Amin (S[G, H, ﬂ])ﬂx(t)|2 +x(t 7)) +|f (a(t))|2)+

2 anHx(®)f +2(|aB]H|+ [AAJHD|)x()x(t - )| +[ABHD|x(t — )]
From here we will have that

d—v [X(t)] < ~[Ain (S[G, H, B]) - 2 AAH|x(®) +
2(|AB||H| + |AAJHD|)x @)Xt = )| = [Ain (S[G. H., 8] 2] AB|HD|)|x(t - 2)]* -
_ﬂ“min (S [G1 H ’ﬂH f (G(t))z"

Then, as appears from Sylvester’s criterion [29], performance of system of inequalities will be
a condition of absolute interval stability

2in(S[G.H, B)-2aAH| >0,
[ein(S[G. H, )~ 2| AAH [ 210 (S[G. H, B]) - 2B HD[]-
-~ (jaB[JH |+ aA]HDF 0.
Let's copy the second inequality in a type

Zin (S[G. H. 1)~ 2] A H|+ [ AB]| HD| i (S[G. H. 8]~ ([ABJ|H| - [aA] HD]F* > 0.

It will be true especially if there will be positive definite matrices G, H and parameter
£ >0, at which
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Zin(S[G,H, B) > [|AAH| + B HD[ ]+
+/l|AAH |+ [ABJHD[F + [|aBJJH]|+|AA|HD[] .
From here the statement of the theorem 4 follows.

From the theorem 4 directly the consequence which is easier realized for check of conditions
of interval stability follows.

Consequence. Let there exists positive definite matrices G, H and parameter >0, at
which the inequality is true
A (S|G,H, 2 2
(SO Y., (1ang g+ |4+ a8 + (a8 + [aAJDY
Aenax (H)
Then system (10) is absolute interval stable in the metrics ||x(t)[, -

CONCLUSION AND PROSPECTS

In the paper for the nonlinear systems of automatic control described in terms of the ordinary
differential equations with delay and neutral type, and also having uncertainties in the set of
linear parts, are received constructive algebraic criteria of interval absolute stability. At the
expense of application of the alternative approach of Lyapunov-Krasovskii functional, form
of estimations in sufficient conditions of interval stability are essentially simplified in
comparison with obtained analogous one on the basis finite-dimensional Lyapunov's functions
of Lur’e-Postnikov types [22,23,31,32].

In the chosen approach that results can be extended further on, a so-called, critical case
(indirect control system) is perspective. Besides, applying the specified approach, similar
results for the discrete systems are obtained [33,34]. It studying is actual enough recently.
Also from the point of view of authors interest in the future represents construction of
Lyapunov functions and Lyapunov-Krasovskii functionals, which are optimal in the classes
by the set criteria of quality, for example [35].

It should also be noted next fact, if conditions of the Theorems 1-4 could not fulfill, it’s not a
dead-end situation. In such case, you can go for example to the solving the stabilization
problem to a state of absolute stability [36,37].

All this confirms the viability and prospects of Lyapunov’s direct method in the qualitative
analysis of complex dynamical systems.
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RESEARCH OF STABILITY OF NEURAL NETWORK MODELS WITH
DELAY BY THE SECOND LYAPUNOV METHOD
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Abstract: This report considered the dynamics of a neural network model that describes a
system of differential equations and for study the stability using the method of Lyapunov
functions with an additional condition Razumikhina. In rating the total derivative captured
outside the diagonal elements.

Keywords: differential equations, Lipschitz condition, neural network, asymptotically stable
INTRODUCTION

Mathematical models of the dynamics of neural networks described by nonlinear differential
levels, with a dedicated asymptotic stable diagonal part reviewed in [1]. A more adequate
model is system with delay.. It was designated in [2,3]. Apparatus of research such systems
was chosen method of Lyapunov-Krasovskii functionals [2] and the method of comparison
[3]. For research stability we using the method of Lyapunov functions with an additional
condition Razumikhina [4,5]

1. MODEL OF THE PLANE. SYSTEM WITHOUT DELAY

We consider the following model of the dynamics of a neural network, described by a system
of differential equations:

yl(t) = _anyl(t)+ fll(yl(t))+ f12(y2 (t))+ bl’

Y, (1) =—a,y,(t)+ f,.(v,(t)+ f..(y,(t))+b,. (L.1)
Where a,, >0, a,, >0 — constants, f (y), i, j=12 - continuous functions, satisfy
the condition Lipschitz

‘fij(y +Ay)_ f”(y)‘ < Lij|A|’ i’ J :]T
expected that the system of equations
—a,y, + f11(y1)+ f12(y2)+ b1 = O’_azzyz + f21(y1)+ fzz(y2)+ b2 =0. (1'2)

It has a unique solution point M,(y°,y?), y°>0, y°>0. After replacement
y,(t)=x,(t)+y’, yz(t)zxz(t)+ y° we obtain:
%,(t) =2, () (6 (0)+ B (%, ()%, (1) = —a,,%,(0) + F (%, (1) + B, (%, (1)), (1.3)
Fu(x ()= £u060)+y7)= £.(00), Fala(t)= £.06(0)+ v5)- £(y?),
Falx(t)= £ 0)+¥0)- £.00), Rk ()= F(ct)+y2)-£.000). @4

We have the following conditions for asymptotic stability.
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Theorem 1.1. Let the system of equations (1.2) has a unique solution Mo(yf,y;’), y, >0,
y; >0 and exist constantsh,, >0, h,, >0 in which the following conditions is performed

(all o Lll)hll >0, 4(a11 - Lu)(azz - |72 )huhzz - (lehll + L21hzz)2 >0. (1'5)
Then the equilibrium state M, (y?,y?) is asymptotically stable.

Proof. For research stability of the equilibrium M (y?,y?) use the quadratic Lyapunov
function of the form V(x,x,)=h x* +h,,x’.

Its total derivative according to the system (1.4) has the form

jtv<x1( 0= 20,1 0 2,50+ F )+ b 0 Zhx Ok 0+ KO} 0]

or v (10, x,0)=-2la,x0) + 2 0]+ 20 K OFF, (5(0) + s )+
20, 0)F (0 0)+ Fu )

Using the Lipschitz condition, we obtain
(;jtv (Xl(t)’ Xz(t)) < _z[a'.l.lhllxlz + azzhzz 2 t)]+ 2hllxl {Lu‘xl(t} + le‘xz(t)}+

We rewrite the expression whitch obtamed in the form

((jjtv (X (t) X (t)) <£ _2[(a11 - Lll)hllxlz( ) Lthll + L21 22}X1 t}‘ t} (a22 22 Z(t)]

As the criterion of Sylvester [6], the condition of the total derivative is negative definite is
implementation of inequalities

1
(a‘ll - Lll)hll > O’ (a'u - Lll)(aZZ - Lzz)huhzz _Z(lehu + L21 22) >0,
i.e get the conditions (1.5).

2. MODEL IN THE PLANE. SYSTEM WITH DELAY

Let's consider the system on the plane with delay
yl(t) = _allyl(t) + fll(yl(t o 2'11)) + f12(y2 (t — T ))_'_ bl’
y,(t)=-a,y,(t)+ f,.(v,(t - 7,,)) + F,.(y,(t—7,,))+b,. 2.1)

We suppose that 7z, >0, i, j =1,2, a, >0, a,, >0 and function f (y), i, j =12
are continuous and satisfy a Lipschitz condition. Let make a replacement yl(t) = xl(t)+ Y.,
y,(t)=x,(t)+ y° and the system (2.1) reduces to the form

x, (t) = allxl(t)+ (X (t—7,))+F,(x,(t—17,)),

XZ (t) = 22 2 (t)+ I:21()( (t TZl)) + |:22 (XZ (t - T22 )) (22)
And the research of the stability of the equilibrium position Mo(yf, yg) has been reduced to

the research of the stability of the zero equilibrium state of the system (2.2). We get the
following conditions for asymptotic stability.
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Theorem 2.1. Let the system of equations (2.2) has a unique solution |\/|0(yl°, yg) and there
exist constants h,, > 0, h,, > 0 in which the following conditions performed

{au L, - Luﬁ}hlpo 4[% L-L, th Lzl\/: Lzz}huhzz—
- h, i . 2.3
[ peleoER T

Then the equilibrium state Mo(y1 , y2) is asymptotically stable.

Proof. for the research of sustainability we will use the quadratic Lyapunov function
V(x,%,)=h x> +h2x2. For calculating the total derivative of the Lyapunov function by

virtue of system (2.2) we will use B.S.Razumihina condition [4,5]. For the Lyapunov function
V(x,,X%,)=h,x* +hZx it has the form

h,x?(8)+ X3 () =V (x,(s) %, () <V (x, (), %, (1)) = h, )¢ () + h, X3 (1), S<t. (2.4)
It follows that

k(o)< 6@+ ). o)< [P @ex) st @9

The total derivative of the Lyapunov function by virtue of system (2.2) has the form
SV 6, @, %,0) = 200 O 8,00+ Fulit - 2.)+ Bt -, )} +
+2h,,x, (t = a,,x, (t)+ F,,(x,(t — 7,,))+ F,, (X, (t — 7,,))}-
Using the Lipschitz condition, we obtain
jtv (e 0.0) = ~2lah ¢ @)+ 2 O]+ 2R OfLbat - 7))+ Lot —m)}+
+ 20, (L (= 2 )+ L, (= ,,) -

When we open the brackets we will get
d
av (Xl(t)’ Xz (t)) < _2[a11th12 (t)+ azzhzzxz2 (t)]+ 2hllxl(t)|_11‘xl(t - 2'111 + 2h11X1(t)L12‘X2 (t - 2-121 +
+ 2h22X2 (t)L21|X1(t - 2-21] + 2h22X2 (t)L22|X2 (t T

It is known that for arbitrary A > 0 and B > 0 following inequality holds

VAT +B? < A+B. (2.6)
Using the conditions BS Razumihina (2.5) and inequality (2.6), we obtain

X (t—s) < \/xf(t)+%xj(t)£|xl(t)|+ s, (1),

%, (t—s) < \/ () + x2(t) < E—:|>g(t)|+|x2(t)|. 2.7)

22

It follows that
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—V (%, (), %, (1) = —2[a,h, )¢ (©) + a,h, O]+ 20,0, x, (t)l[lxl(t)l + %Ixz(t)l} +

+2L12h11x1(t]{ Em(t}+xz(t}]+2Lﬂhﬂx (t][xl(t} hlx ]+2L22h22x i l‘xl(t)sz(t)\].
Or

SV )= - 2 8L [1 )+

H}MJQQ+Lﬂ}h (L L JhJﬂ}xax ()~ aaﬂ-LﬂJE%ﬁtﬂgmpéa)

And, as the criterion of Sylvester [6], the condition of asymptotic stability will be the
implementation of the system of inequalities

2|:a11 - L11 - I_J.Z\/F:|hll > 0’4|:a11 - L11 - L12 :;Ill :| |:a22 - Lzl\/% - L22:|h11h22 -
[(Lu o Lujhu [Lﬂ o ]h} >0

i.e we get implementation of conditions (2.3).

3. SYSTEMS IN N-DIMENSIONAL SPACE

The most common case is the system delay in the n-dimensional space. The system has the
form

,(t)=—a,, )+ > ,(y,(t-7,)+b.- (3.1)
Let's make change y,(t)=x(t)+ y° and the syslt:;m (3.1) reduces to the system
% (t)=—a,(x(t)+ y°)+ Zn: (%, (t—7,)+y°)+b- (3.2)
We rewrite it as "
%(t)=—axt )+ilﬁj(xij(t_fij)), (3.3)
E (= )= 1, (6 (=7 )+ v7) £, (v°) (3.4

And the research of the stability of the equilibrium position M,(y®,y?,...,y°) has been

reduced to the research of the stability of the zero equilibrium state of the system (3.3). We
introduce the following notation

L, . L, L L, L, L, Ly Ly L
L=t 2, L= 2y 2L = , (3.5)
C, €, G
C= Co Cp - Gy , (36)
Cln C2n Cnn
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¢, =20, @, ~Lyh ) e, =L yh, + Ly |oe, = =R [y, + Ly, |
¢,y = 20, (@, — L,hy, ), G = —Jhoh (LA, + Ls\/7] =~ [Lh + L)
Cooe=20 @~ L i) c. —Jhm,l [ o +uhL ] @
Cpn = 2hnn(anyn - LHJT”).

There have been the following conditions of stability

Theorem 3.1. Let the system of equations (3.1) has a unique equilibrium position
M, (y°,y2,....y°) and exist onstants h, >0, h,,>0,..., h in which the conditions are

performed

11 12 1n
C C
A=h,>0, A =" 250,50 = G2 o Cal g, (3.8)
n
ClZ C22 .
C1n CZn Cnn

Then the equilibrium state M, (y?,y?,...,y°) is asymptotically stable

Proof. For research stability of the equilibrium M, (y?,y?
function

y?) w will use the Lyapunov

V(X %,000X, ) = Zh.., (3.9)

For calculating the total derivative of the Lyapunov functlon by virtue of the system (3.9) we
will use B.S.Razumihina condition [4,5]. For the Lyapunov function (3.9) it has the form

Zm”() V(%) %,(8)..... %, (8)) <V (x, (1) %, (t).... Xﬁ»=gmﬁm%5<t (3.10)

It follows that
n h

o x2 hy h,
% (s) < 2 X2 (t) < h %, (t)+ h %, (t) +...+

My (1), S<t.i=Ln. (311)
h.- n

The total derivative of the Lyapunov function (3.9) by virtue of the system (3.3) has the form

Using the Lipschitz condition, we obtain

SV 000 0) < 258N K0+ 25X O3 L -7, )

Let's consider the second summand. Using B.S.Razumihina conditions (3.11) and inequality
(2.6), we obtain

X, {t- 2, )1 = 20 OL = ) + Lot = 73,) o L i =, Y]

+2h22x2()[Lﬂ\xl(t—rﬂ%gz\xz(t—1221+ +L, \x( )|+
+ 20, X, (O Lx (=7, + L[, (t =7, ) +. -7, )=

nn"'n
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=zhnx1<t4L{ 0Pl L‘;wx}

1

+Ll{ E“xl(t]+ Ezzxz(t)+...+ E“”xz(tﬂ+...

22 22

+Lm[ &\xl(t% hzzxz(t)+...+mxn(t)}+

+2h,%, O i x, (1) + %‘Xz(t)“ n

+L22[ hi;xl(t]+ E—zixz(t]+...+ /E—sz(t)}+...

hll h22 hnn E _nn
Lt )+ X+ Xt 2h x (tKL, t +..+ +
o] Bt e [ 2na L el el e
h h
+Ln{ EZXI(t]+ hZXZ(tX+...+ hZZXZ(t):|+...+ Ln{ rr::xl(t% h:xz(t)+...+ h::xn(tﬂ}.
We introduce the following notation
_ Lll L12 Lln L21 LZZ LZn L LnZ Lnn

+ +..+ L L=—"+

L= et L=+ o2, L= g
\/E h22 \/h7nn \/E \/h722 \/h7m \/E h22 hnn

Then

s<zhuxl IRNCNA w F \x Y 1))+

+2h x {

22772

X}
ety {m )+ mx

Rearranging the quadratic terms, we obtain

s <20, L/ (t) + 2L h, + L h x @), () +
+ 2|, Ly + i IOl O+ + 2lh Ly, +h L [ O], 0+
+2hzzgﬁxz(t+2[hzzuf #hL i e O O]+ .+ 2, Ly, + b, L YR I, 0, () +
+2h L 08 +2[hnlnllﬁ1 \/7+hnnlﬁ1m]nl] (t)++2h, er

We transform this expression the following way

§ <2, LRy X ()+ 2 Ly + Ly O 0]+
2R (LR, + Lafhg Jx @) (t)|+ +zm L+ Ly J @)l (t)|+
+2h22L\/7x )+ 2/ Ly, + Lfh, [ b () + ..+ 24, Ly, + Lofh [ ()
il /DX 1(t+2\/7[Lh \/7+Lh\/j] (t)x,(t)]++2h, L\/7x

Let's introduce the following notation

138



o

12 e Cln

22

C C

C, oy e n
C,= 2h11(au - H\/E)’ Cp, == h11h22 ['—u/E + LZ\/h722:|""’Cln =7 hllhnn [H\/E + an],
¢, = 20, (8, — Lo/, )y € = —ph [Lfh, + L, |Gy = —fh LR, + L s
Cn—l,n—l = 2hn—l,n—l(an—l,n—l - Ln-l\/ hn—l,n—l )’ Cn—l,n = _\/ hn—l,n—lhn,n [Ln—l\/ hn—l,n—l + Ln \/E ]’ Cn,n = 2hn,n (an,n - Ln \/E )

Then, for a total derivative of the Lyapunov function due to a delay system (3.3) will have the

inequality
x, () (x(t),

VOO, 0).x, 1) < (% (0), X (0o, ()

X, (t)-..,

And the condition of stability is a positive definite of the matrix C. As the Sylvester criterion,
it is necessary and sufficient that all principal diagonal minors were positive, i.e, the
conditions of Theorem 3.1. ned to be performed.

We can show that in the particular case of n-terms of the asymptotic stability of (3.8) coincide
with the conditions of stability (2.3) in the plane.
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Abstract: The authors of the paper deal with the application of mathematical and statistical
methods and Design of Experiments (DOE) in order to identify and analyse factors affecting
the process of electrolytic alkaline zinc plating at a current density of 0.5 A.dm 2. Based on
the DOE methodology according to the central composite design, the set of experiments
containing 40 runs has been performed. The influence of seven input factors on the final
thickness of formed zinc layer has been investigated. In this paper, the mathematical-
statistical model predicting the thickness of the formed layer is presented. In order to save
time, as the possibility of increasing the efficiency of the technological process, non-linear
programming was used to optimize the zincing process.

Keywords: design of experiments (DOE), mathematical — statistical model, electrolytic
alkaline zinc plating, significant factors, optimization.

INTRODUCTION

Technological processes of surface treatment belong to multifactorial systems, present
complex non-linear processes actuating several technological, physical, chemical and material
effects and their mutual interactions. That is why the analysis of these processes by classic
methods appears to be non-efficient and many times leads to incorrect conclusions. At the
process analysis, observation, examination, comparison and synthesis (optimization and
forecasting), we find the basis in determination of bonds and relations between input and
output parameters. It is significant to identify if certain factors (input parameters) have an
influence on observed parameter (response). Then it is necessary to find such levels of factors
in order to reach the optimum (maximum, minimum) of the observed parameter [1], [2]. To
solve such practical problems it is more suitable to use experimental and statistic approach
than determination approach. The analysis and synthesis in conditions of incomplete
information is carried out at experimental and statistic approach of process analysis of surface
adjustments. Even though the nature of examined process is not completely known,
incomplete information for setting optimal conditions is updated by the experiment and
known data. Wide use of various experimental methods is the consequence of incomplete
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information and continual improvement of old and creation of new objects, processes and
procedures [3].

The process of electrolytic alkaline zinc plating, where at the right choice of technological
factors it is possible to create such a protective layer of material that will have requested
thickness and properties and it will fulfil defined criteria (e.g. resistance against corrosion),
also belongs to multifactorial and non-linear systems. Identification and analysis of the factors
functioning in this process and observing their influence on created layer became the object of
our scientific research and experimental work [4], [5], [6] and it is also solved in the paper. In
contrast to majority of scientific and expert works on the problem [7], [8], [9], [10], where the
selected parameter of created layer in relation to only one factor is analysed, the paper focuses
on deeper and more complex identification of influences of several factors and their
interactions functioning in the process of electrolytic alkaline zinc plating, which did not go
without the use of Design of Experiments (DOE). In contrast to COST approach Design of
Experiments (DOE) enables us to observe in given time common influence of several factors
on the response and find optimal combination of setting the values of input process
parameters. The change of only one selected factor in given time is considered at COST
approach within the frame of experimental work (COST is an acronym of English expression
“consider one separate factor at a time*), which is inefficient approach, because it does not
provide necessary information in order to reach real optimum, experimental work is
overpriced.

1. EXPERIMENTAL PART

S355J0 material was used to carry out the experiment. Within the frame of individual
experiments above mentioned method of electrolytic alkaline zinc plating at current density of
0.5 A.dm? was used. Zinc electrolyte was used, which is characteristic of its high depth
efficiency, low zinc concentration and high coating ability. Zinc is currently an available
option at the protection of metals from corrosion and creating special properties of material
surface. Zinc anodes are placed into a separate dissolution bath, where it is possible to
regulate the zinc content by sinking and lifting of anodes. Zinc is brought into the coating bath
through filter by the circulation circuit. During alkaline coating it was necessary to secure the
components of glitter additives in requested concentration in the electrolyte. Zink plating of
samples was based on DOE with selected central composite plan with 40 individual
experiments. We were interested in the influence of 7 input factors functioning on thickness
of created zinc layer, i.e. functional dependency § = (X, X,, X5, X,, X5, X5, X, ), Where x, — is

the amount of NaOH in the electrolyte, x, — is the amount of ZnO in the electrolyte, x, —the
amount of glitter additive Pragogal Zn3401 in the electrolyte, x, — the amount of glitter
additive Pragogal Zn3402 in the electrolyte, X, — electrolyte temperature, x, — time of zinc
plating, x,— voltage. Experimental conditions and individual levels of individual variables

(factors) can be found in Table 1. The thickness of layer coating using the digital thickness
meter MINITEST 4000 was measured at individual samples in selected experimental points.
Experimentally obtained data presented an input matrix for the further statistic processing.

Design of Experiments, which was used to identify significant factors influencing the

thickness of created layer, enabled us to obtain maximum amount of information with high
statistic and numeric precision at optimal number of individual experiments [2].
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Coded Factor level in planned experiment

factor Factor Unit 221 1 0 1 2,21
X, m(NaOH) [g : |‘1] 19.33 80.00 120.00 180.00 240.67
X, m(znO) lg-17] 3.15 8.00 12.00 16,00 20.85
X3 m(zn3401)  |ml .17t 2.18 4.00 5.50 7.00 8.82
X, m(zn3402)  |mi.17 0.68 2.50 4.00 5.50 7.32
X T [°C] -0.13 12.00 22.00 32.00 44.13
X6 t [min | 1.15 6.00 10.00 14.00 18.85
Xy U V] 0.79 2.00 3.00 4.00 5.21

Table 1. Indication and values of technological factors

Individual experiments were carried out on the basis of created matrix of experimental plan as
a combination of individual levels of 7 input factors in accordance with Table 1, in which
experimental conditions can be found. Individual experiments were carried out in random
order. This randomisation is needed because of minimizing systematic errors or preventing
subjective preferring of some of the input factor levels. Orthogonality of experimental plan
was verified by means of the scalar products, i.e. all matrix columns of experimental plan
must be perpendicular to each other and non-zero in order to avoid the wrong indication of
statistic non-significance of regressors [6]. Well known transpose relation [6], due to which
original physical units can be transposed to non-dimensional form, was used to norm (code)
the basic factors.

2. RESULTS AND DISCUSSION

Exploring analysis, screening analysis, dispersion analysis and DoE analysis were carried out
based on statistical analysis of experimentally obtained data. By using software products such
as Matlab, Statistica, JMP or QC - Expert we recognized significant factors that have
influence on the final thickness of AAO layer, analysed their interactions and obtained the
shape and coefficients of mathematical and statistic models that predict the thickness of
created layer at changing factor levels. Data analysis was carried out with statistically correct
approach involving the analysis of basic conditions and following analysis of the classic
regression triplet: data, model, residuals. That is why it can be said there was no numeric and
statistic incorrectness of the results when deducing and interpreting the results, which was
also confirmed by practical experiences in the area of surface treatment.

Basic analysis of obtained results of measuring thickness of created layer at individual
experiments results from dispersion analysis (ANOVA), Table 2.

Source DF Sum of Squares Mean Square F Ratio Prob > F
Model 6 207.5383 34.5897 5.9572 0.0003*
Error 33 191.6105 5.8064

C. Total 39 399.1488

Table 2. ANOVA table for proposed prediction model

It can be judged from the table of dispersion analysis that variability caused by random errors
is markedly lower than variability of measured values explained by the model and value of
obtained significance level (Prob > F) points out adequacy of used model based on Fisher—
Snedecor test. The further testing of used model by so called error test of insufficient model
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adjustment, where we observe residual dispersion and dispersion of measured data inside the
groups and test if regression model sufficiently describes observed dependency, can be found
in Table 3. Considering the obtained value of significance 0.3486 by Fisher test it can be said
that the model sufficiently describes variability of experimentally obtained data. Model
significance is confirmed, dispersion of residual values is lower than dispersion inside
individual groups at the selected significance level of & =0.05.

Source DF Sum of Squares  Mean Square F Ratio Prob > F Max RSq
Lack Of Fit 28 171.2105 6.11466 1.4987 0.3486 0.9489
Pure Error 5 20.4 4.08
Total Error 33 191.6105

Table 3. Table of error of insufficient model adjustment

The following Table 4 presents assessment of model parameters with testing of significance
of individual effects and their combination at significance level « =0.05 based on above
mentioned conditions and their completion (Table 2 and Table 3).

Term Estimate Std Error tRatio Prob>|t|] Lower 95%  Upper 95% VIF
Intercept 14.10792  0.599205 23.54  <.0001* 12.88882 15.32701 .
X7 1.483657  0.432078 3.43 0.0016* 0.604588 2.362725 0.985741
X6 1.043233  0.432078 2.41 0.0215* 0.164164 1.922301 0.985741
X1.X1 -1.06999  0.368621 -2.9 0.0065* -1.81995 -0.32002 0.911005
X1.X2 -0.78191  0.512519 -1.53 0.1366 -1.82464 0.260817 0.985741
Xs5. X4 0.647948  0.512519 1.26 0.215 -0.39478 1.690676 0.985741
X4. X4 -0.79972  0.368621 -2.17 0.0373* -1.54969 -0.04976 0.911005

Table 4. Table of assessment of model parameters
(x7 — voltage, xs — time of zinc plating, x1 — amount of NaOH, x> — amount of ZnO,
X4 —amount of glitter additive Pragogal Zn3402, xs — electrolyte temperature,
intercept — absolute term of the model, * - factor or factor combination is significant at
selected significance level of 5 %)

It is obvious from the table of assessment of model parameters that voltage input and time of
zinc plating have the main influence on the thickness of created zinc layer. Except for
individual functioning factors the second power of NaOH in the electrolyte and amount of
glitter additive Pragogal Zn3402 have also significant impact. The absolute term of the model,
which contains all “neglected” functioning factors in the process of electrolytic alkaline zinc
plating, has the highest importance. VIF (Variance Inflation Factor) or inflation factors of
dispersion of regressors are important indicators from the point of view of statistic criterion of
non-orthogonality [7]. It is valid that VIF is lower or equal to 1 (predictors are not correlated,
plan is uncorrelated and orthogonal), higher than 1 but lower than 5 (indication of medium
correlation and plan non-orthogonality), higher than 5 but lower than 10 (significant
correlation and plan non-orthogonality) and finally higher than 10 (multi correlation of
regressors and plan non-orthogonality). If VIF >1, assessment of regression coefficients is
numerically correct, but their p — values, which are defined as diagonal elements of inversion
correlation matrix (j = 1...p), are not correct.

VIF, =D, =diag(D) = diag(R™) (1)
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Since results point out uncorrelation of predictors and orthogonality of experimental plan,
based on Table 4 prediction equation for the thickness of created layer (§ =th) in coded form

can be expressed as
¥ =14,10792 +1,483657 - X, +1,043233 - x, —1,06999 - X;

)
—0,78191, - X, +0,647948 X, - x, —0,79972 - x?

To set up the prediction relation in the natural scale it is necessary to realize that within the
process of analysis used factors were coded by DoE norming in a coded scale:

X(l) _ erx + Xmin

Xy (i) = — ——2 3)

max min

2

where X, (i) is normed variable according to DoE, x(i) - original basic variable, where
i=123...n, n - the number of basic factors, x.,, - maximum value of original variable x(i),
Xn - Minimum value of original valuable x(i) .

Considering transpose relation and statistic prediction equation (3) it is possible to express
prediction relation describing observed dependency for current density of 0.5 A.dm2 as

th =m(Zn3402)-0,386 —0,035 - T +0,671-U + 0,118 -t + 0,034 - m(NaOH )
+0,112 -m(Zn0) —8,736 -10~° - (m(NaOH) }* — 0,073 - (m(Zn3402) )’ (4)
—7,983.10*(m(NaOH ) - m(Zn0)) +8,819.10 - (M(Zn3402) - T)) + 6,806

The prediction equation will serve as the basis to optimize the process by non-linear
programming.

3. PROCESS OPTIMIZATION

The nature of optimization problems lies in determining such a combination of values of
individual factors, at which “the best” value of optimization parameter is obtained. The
obtained factor values are called optimal values. Optimization problems are highly significant
at proposals of technological processes as well as projecting engineering objects, their
realization and during their operation. In term of surface treatment of metals the time of the
process duration is one of the most important parameters that determine the efficiency of the
entire process. If we manage to minimize the time needed to create the layer with requested
thickness at setting functioning factors, economic profit can be maximized at securing
requested quality. If the time of zinc plating is expressed from equation (3), an optimization
(criterion) function is obtained.

The basic task of non-linear optimization is to find the minimum of the problem defined as
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c(x)<0
ceq(x)=0
min f(x){ Ax<b ®)
' Aegx =beq
Ib <x<ub

where X, beq, Ib and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) are vector
functions and f(x) is a scalar function. Functions f(x), c(x) and ceq(x) are non-linear functions
[8]. Conditional inequations are obtained at defining of fringe conditions of the process of
electrolytic alkaline zinc plating considering data presented in Table 1 and Table 4 and nature
of the process

80 < m(NaOH) <130 (6)
7,5<m(Zn0) <18 (7)
2 <m(Pragogal Zn 3402) < 6,5 (8)
12<T<28 9)
2<U <5 (10)

To solve optimization problem (4) non-linear programming in Matlab was used. In
consideration of requested thickness of the layer of 12 um as the most often requested
thickness respecting fringe conditions (6) to (10), optimal time of 11.305 [min] is obtained at

m(NaOH)=112.585 [g-17], m(Zn0O)=18 [g-1*], m(Pragogal Zn 3402)=3.392 [ml-17], T=12
[°C] a U=5 [V]. The graphic output of optimization can be found in Fig. 1 - Fig. 5.

Current Point

120 .

urrent point

=
C

Number of variables: 5

Fig. 1. Graph of current points of optimization of zinc plating time for layer thickness of
12 um
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Total Function Evaluations: 164
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Fig. 2. Entire function evaluations of optimization of zinc plating time for layer thickness of
12 pm
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Fig. 3. Actual function value of optimization of zinc plating time for layer thickness of 12 um
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Fig.4. Maximum value of violation of function of optimization of zinc plating time for layer
thickness of 12 um
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Fig. 5. Step size of optimization of zinc plating time for layer thickness of 12 pm

CONCLUSION

It is not suitable to use COST approach at experimental work at analysis of technological
processes of surface treatment, when it is important to observe mutual influence of several
functioning factors at the same time [2]. The application of DOE approach is more suitable
one, which is presented in the paper that solves a particular problem from practice, where
prediction equation set on the basis of statistical analysis of experimentally obtained data in
the process of electrolytic alkaline zinc plating was optimized by DOE application and non-
linear programming application. The main contribution of the paper is the fact that optimal
process conditions of surface treatment were found so that fulfilment of demands of final
customers was secured.
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Abstract: With the increasing dependence of countries on the critical infrastructure, it
increases their vulnerability. Big threat is primarily in the human factor and especially in
terrorist attacks. The biggest breakthrough in the approach to the protection of the critical
infrastructure has occurred after September 11, 2001, when there was a terrorist attack in the
United States. Based on this event protection of critical infrastructure against terrorist
attacks came to the fore. The emphasis is put on the application of the security audit method
on the selected objects of the critical infrastructure to find gaps in the critical infrastructure
security. The research will be also focused on the crisis preparedness of selected
municipalities and results of this research will be used as a foundation for the evaluation of
crisis preparedness of critical infrastructure objects in selected areas.

Keywords: safety audit, critical infrastructure, object of critical infrastructure

INTRODUCTION

Approaches to the protection of the critical infrastructure have been long developing not only
at home but also abroad. The biggest breakthrough in has occurred after September 11, 2001,
after terrorist attack in the United States. Based on this event, the protection of critical
infrastructure came to the fore. To ensure safety of endangered objects of the critical
infrastructure by such a terrorist attack, it is appropriate to apply the method of the security
audit for identifying the weak points.

1. PROTECTION OF CRITICAL INFRASTRUCTURE

This chapter discusses problematics of critical infrastructure of the Czech Republic and using
of the safety audit on selected object of the critical infrastructure.

1.1 Critical infrastructure of the Czech Republic

The basic function of government is to ensure the protection and development of the protected
interests and sustainable development of human society. The Constitution of the Czech
Republic, as the highest legal document of the Czech Republic, declares that the protected
interests of the state are the goals that are cherished as a priority, i.e. the lives and health of
people, property, the environment and safety.

Critical infrastructure of the Czech Republic is defined as production and non-production
systems and services, whose malfunction could have a serious impact on national security,
the economy, public administration and on ensuring of fundamental life needs
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of the population. [1]

The object of critical infrastructure is then defined as a building or facility to ensure
the functioning of critical infrastructure. Objects of critical infrastructure are the production
and non-production systems and services whose disruption or complete destruction would
have a serious impact on the running of the state, for its operations and performance of its
functions. [1]

1.2 Selected objects of the critical infrastructure

As one of the objects of critical infrastructure we chose, as a model, airport Brno-Tufany.
There will be carried out a research focused on the airport of VVaclav Havel in Prague, in the
near future. As a second object of the critical infrastructure, there was chosen the Nuclear
Power Plant Dukovany.

To enhance the protection of the objects of the critical infrastructure and minimize the risk
of attacking those objects, it is appropriate to apply the security audit method to find weak
points (gaps) in security.

1.3. Using of security audit method

Security audit is a systematic, if it is possible, independent examination to determine whether
all activities and related to results comply with planned arrangements and whether these
arrangements are implemented effectively and if they are suitable to achieve objectives
and policies of the organization. Audit is an integral part of security management. It is a very
effective tool to check its status and the status of the entire organization. [2]

Audit is an independent, documented process that aims to determine whether activities and
related results comply with audit criteria, and to what extent. Audit criteria may be procedures
and requirements of the organization, procedures, politics etc. The outcome of the security
audit is not only the assessment of compliance, but also to assess the effectiveness
and reliability of safety management. The audit must take into account:

e Effectiveness of the organization,

e Risks,

e Level control and process efficiency,

e Level of management and process efficiency,

e Opportunities for cost reduction, waste and other forms of waste,

e Opportunities for process improvement, the overall security status of the

organization. [2]

To make audit plan to function, it is necessary to pay great attention to the selection and
qualification of auditors. Procedures for carrying out the audits a company prepares itself and
in accordance with the standard must include:
e The subject and scope of the audits and their frequency,
e Auditing methodology, defining responsibility and authority for the audit program, the
audit arrangements in terms of management,
e Own auditing procedure,
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e The conditions and specifications to present reports on the results of the audit,

e Competence requirements and training of auditors,

e Own auditing procedure,

e The conditions and specifications to present reports on the results of the audit,

e Competence requirements and training of auditors,

e Way to discuss the audit findings with relevant staff,

e The monitoring and verification of the effectiveness of corrective measures. [2, 3, 4]

With the connection of ensuring the protection with the help of security audit, there is also
necessary to focus the attention on critical infrastructure protection but also on crisis
preparedness of municipalities, because there are many activities of security protection closest
to the citizens.

2. EMERGENCY PREPAREDNESS OF MUNICIPALITIES

According the current legislative framework there is established new legislative background
concerning with municipalities with extended power. Within the scope of ensuring security as
it was mentioned before moves the attention to occupy with protection on municipality level,
concretely said crisis preparedness to deal with extraordinary events. The branch of
population protection and crisis management is sophisticated and it is really important to put
the attention not only on crisis response system from the point of view of law but also from
the point of view of municipality bodies. It means to concentrate on the role of municipality
managers they are closest to their citizens and deal with extraordinary event just on the hot
spot, where this situation happened. According the interview with professionals from crisis
management departments of municipalities, they are saying that current situation about crisis
preparedness is everything prepared but some problems could appear when new elected chiefs
of municipalities are not so educated and erudite to be able to deal with crisis or another
situation. From the point of view of ensuring the municipality protection is really important to
establish a team of people that will be appropriate educated and be able to make the
preparedness background of municipality to deal with mentioned events. [5]

Also necessary was to establish some criteria that would be able to evaluate crisis
preparedness of critical infrastructure elements because this problem has not yet been
modified in the czech law. Indistinct competences and relationships were the basic of
establishing new legislative framework to define specific rights and obligations of crisis
management of the municipality. Concrete and specific informations is possible to find in the
law of crisis management 240/2000 Coll., § 10, para. 1., about coordination the preparation
for crisis situations and their solutions the Ministry of Interior. The part of this Ministry is
General Directorate of Fire and Rescue Service of the Czech Republic. [5, 6]

This is the analysis part of the research and in future research there will be the attention
focused on crisis preparedness of municipalities, especially municipalities with extended
powers. The major aim is to declare and evaluate the situation how municipalities in the
Czech Republic are prepared to deal with crisis situations and extraordinary events. [7, 8]
The fulfil approach will contain particular parts. There will be the current status analysis of
problem concerning to the main topic, how the municipalities are prepared in these days, what
they need and where we can find potential problems. After this research part will be
performed the analysis part of the research with the main aim to define current readiness of
municipalities with extended powers, especially with emphasis on present status where data
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and information are collected by using interview and surveys, also from received materials
concerning crisis management. [6, 8]

As a technical and software support of the research will be used sophisticated software and
programs with integrated database which will be able to provide and model an adequate
schema of actors, entities and environments during dealing with extraordinary events. There
will be used KISKAN program, which uses database system for supporting crisis management
processes and also ensures business continuity. It is able to provide processing of crisis plans,
emergency plans and plans of crisis preparedness, also ensures information exchange about
readiness to deal with crisis situations and extraordinary events among independent subjects.
KISKAN program focuses on the environment in which information can be processed in
accordance with provisions of the Act No. 240/2000 Coll., on crisis management and Act No.
239/2000 Coll., on integrated rescue system. KISKAN is able to support processes such as:
risk assessment, local and distant crisis situations solution, sources preparation, measures
planning, document creating many others. Among the main functions for supporting crisis
management processes of KISKAN belong: processing of overview possible risks, sources
integration of all information for crisis readiness into one relational database, creating of
connecting overview to the crisis management subjects, accounting, to specify planned
measures on the basis of experience with crisis situations, creating a centre for receiving SMS
messages and sending notification, GPS surveillance positions and routes of mobile resources
in real time, local and remote activation of a crisis situation by an activation code and
monitoring their performance in real time, secure data exchange electronic signature and
encryption, automated updates of the plan dealing with the crisis according to the status of
tasks, further processing of the data in Microsoft Word and Microsoft Excel, synchronization
information from remote databases and many others. [6, 9]

All collected information will be processed together into specific database which will evaluate
them and by using this programme is possible to compare answers of responsible persons,
their relations etc. display on one scene. As a result will be concrete recommendations how to
process and evaluate current status of crisis preparedness, how to find some shortages and
suggest new approaches to improve the area of crisis management. [7, 9]

3. SIMULATION PROGRAMS FOR TESTING EMERGENCY PLANS

Simulation is an imitation of some real thing, condition or process. The act of simulation of
something itself generally means displaying some key features or behaviour of selected
physical or abstract systems. Simulation is used in many contexts comprising modelling of
natural or human systems with the aim to obtain knowledge about their behaviour. [10] Other
contexts comprise technological simulations for optimizing the performance, security
engineering, testing, training and educating. Simulation can be used for visualisation of
possible real impacts, alternative conditions and ways of acting. Key issues in simulation
comprise e.g. obtaining valid sources of information about corresponding selection of key
characteristics and behaviour, using the simplifying estimation and prerequisites in the frame
of simulation as well as reliability and validity of the results of the simulation given. [6, 11]

For the training preparation and verifying crisis plans, instructors can use various computer
programs which enable better graphic visualisation of the solution, practice different ways of
dealing with the different situations and the way of command. What is more, they can
represent a tool for the various roles in the process of solution of the emergency situation. The
environment of these programs increases the effect of preparation, which results in being
more realistic and the trainees will better memorise the trained actions. [8] To verify crisis
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plans and crisis staffs of personnel currently we use the program One Semi-Automated
Forces, which was developed for the army, but after some modification it is also possible to
use it in civil sector.

3.1 One Semi-Automated Forces

Simulator OneSAF is a program of constructive simulation already used for several years
which became widely used according to the needs of training as well as requirements of the
trainees. Currently, a wide spectrum of CAX training types can be carried out by it. The
program has been further adapted and adjusted according to the needs of the Army of the
Czech Republic especially in relation with introducing new armament and equipment. [10]

System has been extended by the elements of the Integrated Rescue System IRS and is widely
used for the training of crisis management staff/specialists of IRS, especially HZS and PCR.

It is an older simulation system of constructive simulation. Nowadays its technology is
outdated. It is primarily aimed at military purposes. Simulation of the activities of the units of
IRS is feasible only partially with certain restrictions. From this reason is currently
implemented simulate system WASP-C, which simulate extraordinary events and activities of
forces and means of the integrated rescue system (IRS) and other players in real time.

3.2 Simulation system WASP

It represents a system of constructive simulation for the computerised generation of forces and
creation of synthetic environment. Originally it was designed for the use of army but the
version for the components of the Integrated Rescue System called WASP-C has been
developed as well. The simulator enables to practice management on the tactical, operational
and strategic levels. Modelling of various emergency situations and their solution is possible
in this environment.

Environment in the simulator is ensured by the combination of terrain database created from
the detailed geographical data, model of weather and other dynamic environmental models.
Terrain database contains all common objects in the countryside (bodies of water, roads, built-
up areas, vegetation, relief, type of soil and other objects). Individual objects have predefined
features influencing simulation of their own entities in relation to their purpose. Weather
editor enables to set basic parameters (date and time, air temperature, velocity and direction of
the wind, type and intensity of precipitations, humidity and pressure of air, type of cloud
cover, light intensity etc.). Some of the parameters are mutually interlinked based on the
actions happening in the atmosphere known from meteorology. Dynamic models of
environment enable to modify the countryside with objects and phenomena which can change
their form in the course of time. There are accidents simulated in great detail as well as a vast
database of forces and means. Program puts more emphasis on the correct execution than on
graphic output and it is aimed at the group of trainees as well as at an individual. [12]

Concept of the program is suitable for the use in practical training of solving emergency
events with the mutual cooperation of the intervening units. The system is completed by a
communication system Astra, which simulates normal means of communication (telephones,
radios, PTT, etc.). Exercise and verification of crisis plans in an environment and only with
funds that have crisis teams routinely available.
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This simulator has proven in previous practical exercises, especially when exercising in
Hustopece, where the exercise was carried out to verify the crisis plans of the municipality.
Exercise was attended by surrounding municipalities, the IRS and other stakeholders. [12]
Conclusions from the exercise helped unify procedures in dealing with similar incidents and
to give impetus to further cooperation between the municipality Hustopece, local companies
and the IRS.

CONCLUSION

The current situation raises a claim for continual improvement of safety relative to existing as
well as future threats. Emphasis is put mainly on education and erudition managers, but also
to implement the latest technologies and practices that can contribute to improving safety, not
only in terms of protection of critical infrastructure, but also in terms of ensuring the
protection of the population and improving the crisis management process.

The solution of crisis situation can be designed and provided by the crisis continuity scenarios
and sophisticated methodological approach. The newest requirements to provide protection of
municipalities, its population and property is still significant item and especially for
municipalities, because after legislative reform is this branch full of gaps that can be studied.

The actual simulation cannot replace the practical deployment in emergencies where
trespassing gain unparalleled practical experience and crisis plans are proved in practice.
However, for the purpose of preventing and preparing for emergencies and crisis situations is
the best practical training. [11] In artificially induced emergencies through constructive
simulator, workers can check not only emergency staff contingency plans, but also their own
communication and leadership skills.
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Abstract: In this paper, we formulate a generalization of a sufficient condition for the
convergence of series with positive terms published by Estrada and Kanwal (1986). We give a
necessary and sufficient condition to such a density for a certain class of matrices be a
compact submeasure. Further we provide an example of the regular matrix for which the
density defined by this matrix is not compact submeasure. Finally, an exponential density of
sets is defined and it is shown that it is not a compact submeasure whenever if the set A S M.

Keywords: convergence of series, density of sets, compact submeasure
1. INTRODUCTION

In the papers [9,10,12] the notion of compact submeasure was introduced. The set function
m: 2% = (0,+w) is called a submeasure if it is monotone and subadditive, i.e.

i) 4B =m(4) =m(B)

i) m(AU B) <m(4) +m(B)

The submeasure m is called compact if
iii) m({a}) = 0 foreverya € A
iv) for every € = 0 there exists a decomposition M = 4; UA, U ..U A_ of M such that
m(4;) < eforeachj = 12,..s.

Before we define the concept of density recall the concept of a regular matrix. A method
defined by the infinite matrix T = (a,,) nk=1,2.. is said to be regular if for all
convergent sequences x = (x,) for which il_l}]’l x, = LeER implies that the sequence

t, = L=y QX CcONverges to L € R. It is well-known that the matrix T = (a,,;) is reqular if
and only if it satisfies the following three conditions (see [11]):

a) IM = D,Hﬂ = 1121 wen Ez::llﬂ’nkl E M
b) lima,, =0k=12,..

¥ —=+00

¢) lim ¥7-,a,, =1
1 —roo

1
n

For example, Caesaro-matrix C =(c,,), where ¢, ==.k<n; ¢, =0,k>n is

regular.

156



Definition 1.1.

Let T = (a,,) be a nonnegative regular matrix and 4 < M. Let

d’;n} (Hj = Z a’nkXA(k:] = 1!21 neep
k=

where x4 being characteristic function of A. Then
d.(4) = ?}ﬂ sup cii_:r”} (4) s called upper T- density of 4
and
d; (4) = lim inf d™ (4) is called lower T- density of A.
If d-(A) = d+(A4) = d(A), then d;(4) = nh-?i 2i=q A4 (K) is a T- density of A.
By the regularity of T = (a,) it is clear that d-(4) € (0,1).

Below are some examples.

Example 1.2.

Let T, = (z,;), Where z,, =z, .4 =% if k=n and z,, =0 otherwise. Matrix

T, = (z,,) is regular and called Zweier matrix. It is easy to see, that dr_(4) € {ﬂ,%, 1} if it
exists.

Example 1.3.

Let Ty, = (a,;) is regular matrix defined by following way:

A =55 fork=n,
Q, =0 fork =mn,
where c, =0(n=12,..)2" ¢, =+m,5(n)=c;+...+c,. Then

dr,, (4) = lim fﬂEf:lckXA[k]. Specifically, if ¢, =1 for every n € M, then we get
dr(4) = lim %Ef:lxd[kj = d(A) asymptotic density of the set 4. If ¢, =% for every
n € M, then we get d;(4) = li_rp ﬁEf:lixA[kj = §(A) logarithmic density of the set A
(see [6,7,8,10]). If ¢, = n® for every n € M and a € (0,1) the matrix Ty, = (a,;) is Riesz
matrix of type k%(cf.[4]). Generally, density defined by the matrix T, is called weighted
density of the set 4 = M (cf.[10]).

Example 1.4.

Let T, = (a,,) is aregular matrix defined by the following way:
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ankzﬁ for k < n,
a, =0 fork =mn,
where ¢, =0(n=12,..), X7 ;c, = +00,5(n) = ¢; +...+c,.

Then d;(4) = hm Ek -1 Cn—rs1X4 (k) 1s @ density defined by at the Norlund matrix. It is

oo S(n)
known that Norlund matrix is regular if and only if hm ;" = 0 (see [11]).

Example 1.5.

According to the Steinhaus theorem ([11, Lemma 3.5.4.]) for every regular matrix there exists
a sequence of 0’s and 1’s which is not summable by this matrix. Such a sequence is the
characteristic function of a any set. Hence there is a set B € H which has not a T- density.

Finally, we give two type of densitites which can not be defined by a regular matrix.
Let A S N. The upper uniform density term % (4) = lim [max e m+1L1(L]]

n—roo

and lower uniform density term u(4) = lim [mln zn m+1XA[L:]] Where it is equal to

L —roo

their common value is u(A4) uniform density of A. (see [1,3]). The upper and lower

i [
exponential densities of an infinite subset A = M are defined by £(4) = lim sup InZi=s 24 (k) :

Inn

£(A) = lim mfﬁﬁi-“‘—k} respectivelly. If E(ﬂ] = £(A) then we say that A has the

H—*oo

exponential density. In case when ={a, <a, <--} is a infinite then
£(A) =1(4) = lim 1:]_; is an exponent of convergence of the sequence (a,,) (see [5]).
1 —*00 1

2. MAIN RESULTS

In 1986 Estrada and Kanwal proved that if a series with positive terms converges along each
set of the zero asymptotic density then it converges in the usually sense as well. It means that
a series with positive terms is divergent there is a set B = N with zero asymptotic density also
that the series divergent along this set (cf.[2]). For example the harmonic series is divergent
hence there is a set I of all primes having zero asymptotic density and series of reciprocal
values primes is divergent too. M. Pastéka generalized this result. He replace the term
asymptotic density with compact submeasure.(see [9]).

We denote 7, = {4 < N: 3(A) = 0} class the subsets of M, where & is arbitrary density

defined in this article. Following inclusion is true:
1,7 €7 17,
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For example set B = UZ_,{n® +1,..n* + n} have not uniform density, but its asymptotic
density is equal to zero. Further the set € = U=, C, , where C, = {n +1,..,n" +1} have
not asymptotic density but its belong to the class Js.

In [12] it is proved this Theorem:
Theorem 2.1.

Let Zi=1a; be a series with positive terms. If for each A &N with @(A4) =0 we have
Ziea @y < +oo, then X7y a; < +oo,

Proof.
It can be easily cheeked that it satisfies properties i) — iv) of the compact submeasures. Since

£ = 0 then we choose an m € N such that i <2 £. The desired decomposition of M can be
taken by decomposition of the residual class, e.g. M =0 U T U ..U (m — 1). Itis true that
i(m—1) = i (see [9]). Hence i is a compact submeasure on 2%,

We ask yourself a natural question: when the T- density is a compact submeasure? For the
upper density dr defined by the matrix Ty = (a,,) (see Example 1.3.) we find a necessary
and sufficient condition such that to be a compact submeasure on 2¥,

Theorem 2.2.

Let Ty, = (@, ) isa regular matrix defined in Example 1.3.
Then d,T (A) = hm sup _— Ek 1 cpxalk) is a compact submeasure if and only if

lim =0,

n—o 5':??:'

Proof.

C"} =0 is holds. According to Theorem 1.2. in [8] the upper density dr . has

n—+oo = L1
(1)

Darboux property. It follows that M can be decomposed into M =k~ U Mf} such that

E—IH_,(M':Q) = 3 = ETH (MEE}). In this way we can construct by induction a decomposition

M= M'k} U..UN; k} such that dI ( k})— —.j=1.2,..,2% k=12, .. and this implies

that dqu_. isa compact submeasure.

Let 11_I>n }— 0 do not hold. Then there exists an infinite sequence (#,) and @ > 0 such
n—oe S0
that En”} >a,k= .. Consider a decomposition N =A4,UA,U..UA_. This
Sing
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decomposition is finite, therefore one of the sets A4, ....A, must contain infinitely many

Copy ..
ey

— I:”Fn:_fj:'
elements of (m.). Let A, ={myy .} Then d, 2 S > @ and so
ciIH_. (4,,,) = a. Therefore E'Tn-' is not a compact submeasure. [
Corolarry 2.3.

a) From Theorem 2.2.
follows, that upper asymptotic and upper logarithmic density are compact submeasure
on 2¥,

b) Thus in Theorem 2.1.
can by replaced the upper uniform density i by the density Jqu_. if li_I>n ;—:} =0
holds.

Theorem 2.4,

There exists a regular matrix T, = (a,,;) for which the upper density ciID is not compact
submeasure.

Proof.

Let us put ¢,, = n™ ,n = 1,2,... in Example 1.3. Subsequently a,,, = m , k<nand

a,; = 0 otherwise. It is easy to see that T, = (a,,) is regular but condition of Theorem 2.2.

il
is not satisfied: lim -2 = lim ——— = lim —~—=1

n—oo Sim) — 0o 1+2%+.- 40l N —oo ‘I‘D_I"ll'l'l’

Finally, we prove that the upper exponential density is not compact submeasure. In [5] it is
shown that for the set 4 = {a; < a, < -~} we have z(4) = 1(4) = lim ll””
¥ =+00

7(4) = inf{t = EI:Z a;’ = —|—m}

k=1
is an exponent of convergence. It is unknown that for A,B SN it holds
(AU B) = max{t(4),7(B)} (see [12]).

where

nay

Theorem 2.5.

Let A={a, <a, <--}S M. Then upper exponential density £(A) is not compact
submeasure.
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Proof.

We assume that £(4) is a compact submeasure, 4 = {a; < a, < ---}. On the basis of iv)
properties of compact submeasure for every e>=0 there exists a decomposition
M=4,UA4,U..UA_ alsothat 5(4) < €,j=1.2,....,5. Let0 < e < 1.

Then 1=&MN)=1(M)= (4, VA, U ...UA )= ﬂ?jﬁﬁmi)’ e T(A)}<e < 1.

This is contradiction. [
Consequently can not replace i (A) with £(4) in the Theorem 2.2.

Open problem
Is a density defined by Norlund matrix (Example 1.4.) compact submeasure?
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